Chin. Phys. Lett.  2018, Vol. 35 Issue (6): 066201    DOI: 10.1088/0256-307X/35/6/066201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Influence of Polar Pressure Transmission Medium on the Pressure Coefficient of Excitonic Interband Transitions in Monolayer WSe$_{2}$
Shun-yu Zhou1,2, Yan-xia Ye3, Kun Ding1, De-sheng Jiang1, Xiu-ming Dou1,2**, Bao-quan Sun1,2**
1State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049
3MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
Shun-yu Zhou, Yan-xia Ye, Kun Ding et al  2018 Chin. Phys. Lett. 35 066201
Download: PDF(938KB)   PDF(mobile)(924KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of the pressure transmission medium (PTM) on the excitonic interband transitions in monolayer tungsten diselenide (WSe$_{2}$) is investigated using photoluminescence (PL) spectra under hydrostatic pressure up to 5 GPa. Three kinds of PTMs, condensed argon (Ar), 1:1 n-pentane and isopentane mixture (PM), and 4:1 methanol and ethanol mixture (MEM, a PTM with polarity), are used. It is found that when either Ar or PM is used as the PTM, the PL peak of exciton related to the direct $K$–$K$ interband transition shows a pressure-induced blue-shift at a rate of 32$\pm$4 or 32$\pm$1 meV/GPa, while it turns to be 50$\pm$9 meV/GPa when MEM is used as the PTM. The indirect ${\it \Lambda}$–$K$ interband transition presents almost no shift with increasing pressure up to approximately 5 GPa when Ar and PM are used as the PTM, while it shows a red-shift at the rate of $-$17$\pm$7 meV/GPa by using MEM as the PTM. These results reveal that the optical interband transitions of monolayer WSe$_{2}$ are very sensitive to the polarity of the PTM. The anomalous pressure coefficient obtained using the polar PTM of MEM is ascribed to the existence of hydrogen-like bonds between hydroxyl in MEM and Se atoms under hydrostatic pressure.
Received: 26 March 2018      Published: 19 May 2018
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  68.08.-p (Liquid-solid interfaces)  
Fund: Supported by the National Key Research and Development Program of China under Grant No 2016YFA0301202, the National Natural Science Foundation of China under Grant Nos 11474275, 61674135 and 91536101, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDPB0603, and the China Postdoctoral Science Foundation under Grant No 2017M622400.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/6/066201       OR      https://cpl.iphy.ac.cn/Y2018/V35/I6/066201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shun-yu Zhou
Yan-xia Ye
Kun Ding
De-sheng Jiang
Xiu-ming Dou
Bao-quan Sun
[1]Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[2]Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[3]Sun Z and Chang H 2014 ACS Nano 8 4133
[4]Moody G, Dass C K, Hao K, Chen C H, Li L J, Singh A, Tran K, Clark G, Xu X and Berghäuser G 2015 Nat. Commun. 6 8315
[5]Sun D, Lai J W, Ma J C, Wang Q S and Liu J 2017 Chin. Phys. B 26 037801
[6]Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D and Yao W 2013 Nat. Commun. 4 1474
[7]Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G and Xiao D 2013 Nat. Nanotechnol. 8 634
[8]Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D, Taniguchi T, Watanabe K, Kitamura K and Yao W 2014 Nat. Nanotechnol. 9 268
[9]Wei X, Yan F G, Shen C, Lv Q S and Wang K Y 2017 Chin. Phys. B 26 038504
[10]Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[11]Qiu D Y, Felipe H and Louie S G 2013 Phys. Rev. Lett. 111 216805
[12]Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
[13]He K, Kumar N, Zhao L, Wang Z, Mak K F, Zhao H and Shan J 2014 Phys. Rev. Lett. 113 026803
[14]Pöllmann C, Steinleitner P, Leierseder U, Nagler P, Plechinger G, Porer M, Bratschitsch R, Schüller C, Korn T and Huber R 2015 Nat. Mater. 14 889
[15]Steinleitner P, Merkl P, Nagler P, Mornhinweg J, Schüller C, Korn T, Chernikov A and Huber R 2017 Nano Lett. 17 1455
[16]Chang C H, Fan X, Lin S H and Kuo J L 2013 Phys. Rev. B 88 195420
[17]Fan X, Chang C H, Zheng W, Kuo J L and Singh D J 2015 J. Phys. Chem. C 119 10189
[18]Ye Y, Dou X, Ding K, Jiang D, Yang F and Sun B 2016 Nanoscale 8 10843
[19]Dou X, Ding K, Jiang D and Sun B 2014 ACS Nano 8 7458
[20]Dou X, Ding K, Jiang D, Fan X and Sun B 2016 ACS Nano 10 1619
[21]Mao N, Chen Y, Liu D, Zhang J and Xie L 2013 Small 9 1312
[22]Cai Y, Zhang G and Zhang Y W 2017 J. Phys. Chem. C 121 10182
[23]Mitioglu A, Plochocka P, Granados del Aguila Á Christianen P, Deligeorgis G, Anghel S, Kulyuk L and Maude D 2015 Nano Lett. 15 4387
[24]Fu L, Wan Y, Tang N, Ding Y m, Gao J, Yu J, Guan H, Zhang K, Wang W and Zhang C 2017 Sci. Adv. 3 e1700162
[25]Fu X, Li F, Lin J F, Gong Y, Huang X, Huang Y, Han B, Zhou Q and Cui T 2017 J. Phys. Chem. Lett. 8 3556
[26]Mao H, Xu J A and Bell P 1986 J. Geophys. Res. 91 4673
[27]Tateiwa N and Haga Y 2009 Rev. Sci. Instrum. 80 123901
[28]Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 066201
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 066201
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 066201
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 066201
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 066201
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 066201
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 066201
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 066201
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 066201
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 066201
[11] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 066201
[12] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 066201
[13] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 066201
[14] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 066201
[15] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 066201
Viewed
Full text


Abstract