Chin. Phys. Lett.  2018, Vol. 35 Issue (5): 057301    DOI: 10.1088/0256-307X/35/5/057301
Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and $Z_{2}$ Topological Insulator
Hui-Xiong Deng1,2**, Zhi-Gang Song1, Shu-Shen Li1,2,3, Su-Huai Wei4**, Jun-Wei Luo1,2,3**
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2University of Chinese Academy of Sciences, Beijing 100049
3Beijing Academy of Quantum Information Sciences, Beijing 100193
4Beijing Computational Science Research Center, Beijing 100094
Cite this article:   
Hui-Xiong Deng, Zhi-Gang Song, Shu-Shen Li et al  2018 Chin. Phys. Lett. 35 057301
Download: PDF(2680KB)   PDF(mobile)(2672KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases. It is a fundamental challenge to realize quantum transition between $Z_{2}$ nontrivial topological insulator (TI) and topological crystalline insulator (TCI) in one material because $Z_{2}$ TI and TCI have different requirements on the number of band inversions. The $Z_{2}$ TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe$_{2}$ alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and $Z_{2}$ TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.
Received: 21 February 2018      Published: 28 March 2018
PACS:  73.43.Nq (Quantum phase transitions)  
  71.20.Nr (Semiconductor compounds)  
  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Hui-Xiong Deng
Zhi-Gang Song
Shu-Shen Li
Su-Huai Wei
Jun-Wei Luo
[1]Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[2]Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[3]König M et al 2007 Science 318 766
[4]Chen Y L et al 2009 Science 325 178
[5]Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[6]Qi X L and Zhang S C 2010 Phys. Today 63 33
[7]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[8]Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[9]Moore J E 2010 Nature 464 194
[10]Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[11]Yang G, Liu J, Fu L, Duan W and Liu C 2014 Phys. Rev. B 89 085312
[12]Fu L 2011 Phys. Rev. Lett. 106 106802
[13]Hsieh T H, Lin H, Liu J, Duan W, Bansil A and Fu L 2012 Nat. Commun. 3 982
[14]Tanaka Y et al 2012 Nat. Phys. 8 800
[15]Dziawa P et al 2012 Nat. Mater. 11 1023
[16]Liu J, Duan W and Fu L 2013 Phys. Rev. B 88 241303
[17]Xu S Y et al 2012 Nat. Commun. 3 1192
[18]Zeljkovic I et al 2015 Nat. Nano 10 849
[19]Cao Y et al 2013 Nat. Phys. 9 499
[20]Zeljkovic I et al 2014 Nat. Phys. 10 572
[21]Luo J W and Zunger A 2010 Phys. Rev. Lett. 105 176805
[22]Tang E and Fu L 2014 Nat. Phys. 10 964
[23]Okada Y et al 2013 Science 341 1496
[24]Zeljkovic I et al 2015 Nat. Mater. 14 318
[25]Tanaka Y et al 2013 Phys. Rev. B 87 155105
[26]Ye Z Y, Deng H X, Wu H Z, Li S S, Wei S H and Luo J W 2015 npj Comput. Mater. 1 15001
[27]Yan C et al 2014 Phys. Rev. Lett. 112 186801
[28]Mascarenhas A 2001 Spontaneous Ordering in Semiconductor Alloys (New York: Plenum)
[29]Wei S H and Zunger A 1997 Phys. Rev. B 55 13605
[30]Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[31]Kondow M, Kakibayashi H, Tanaka T and Minagawa S 1989 Phys. Rev. Lett. 63 884
[32]Stringfellow G B and Chen G S 1991 J. Vac. Sci. Technol. B 9 2182
[33]Kurtz S R, Dawson L R, Biefeld R M, Follstaedt D M and Doyle B L 1992 Phys. Rev. B 46 1909
[34]Jen H R, Ma K Y and Stringfellow G B 1989 Appl. Phys. Lett. 54 1154
[35]Kim T W et al 2001 Appl. Phys. Lett. 78 922
[36]Lee H S et al 2002 J. Appl. Phys. 91 5657
[37]Schröder T et al 2011 Phys. Rev. B 84 184104
[38]Wei S H, Franceschetti A and Zunger A 1995 Phys. Rev. B 51 13097
[39]Slager R J, Mesaros A, Juricic V and Zaanen J 2013 Nat. Phys. 9 98
[40]Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[41]Barone P, Sante D D and Picozzi S 2013 Phys. Status Solidi RRL 7 1102
[42]Zhang J X et al 2011 Nat. Nano 6 98
[43]Zhang J et al 2015 Nat. Commun. 6 10067
[44]Soluyanov A A and Vanderbilt D 2011 Phys. Rev. B 83 235401
[45]Wang Z et al 2012 Phys. Rev. B 85 195320
[46]Liu Z K et al 2014 Science 343 864
[47]Neupane M et al 2014 Nat. Commun. 5 4786
[48]Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[49]Xu S Y et al 2015 Science 349 613
[50]Tarasenko S A et al 2015 Phys. Rev. B 91 081302
[51]Zhang Y et al 2010 Nat. Phys. 6 584
[52]Förster T, Krüger P and Rohlfing M 2016 Phys. Rev. B 93 205442
Related articles from Frontiers Journals
[1] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 057301
[2] Shou-juan Zhang, Wei-xiao Ji, Chang-wen Zhang, Shu-feng Zhang, Ping Li, Sheng-shi Li, Shi-shen Yan. Discovery of Two-Dimensional Quantum Spin Hall Effect in Triangular Transition-Metal Carbides[J]. Chin. Phys. Lett., 2018, 35(8): 057301
[3] Dong-Ling Deng, Sheng-Tao Wang, Kai Sun, L.-M. Duan. Probe Knots and Hopf Insulators with Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(1): 057301
[4] X.-X. Yuan, L. He, S.-T. Wang, D.-L. Deng, F. Wang, W.-Q. Lian, X. Wang, C.-H. Zhang, H.-L. Zhang, X.-Y. Chang, L.-M. Duan. Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator[J]. Chin. Phys. Lett., 2017, 34(6): 057301
[5] Ling-Xiao Zhao, Xiao-Chun Huang, Yu-Jia Long, Dong Chen, Hui Liang, Zhan-Hai Yang, Mian-Qi Xue, Zhi-An Ren, Hong-Ming Weng, Zhong Fang, Xi Dai, Gen-Fu Chen. Anomalous Magneto-Transport Behavior in Transition Metal Pentatelluride HfTe$_{5}$[J]. Chin. Phys. Lett., 2017, 34(3): 057301
[6] Guang-Tong Liu, Yu-Ying Zhu, Qin Wang, Yuan Pang, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Chang-Li Yang, Li Lu, Rui-Rui Du, L. N. Pfeiffer, K. W. West. Observation of an Even–Odd Asymmetric Transport in High Landau Levels[J]. Chin. Phys. Lett., 2017, 34(3): 057301
[7] ZHU Hua-Xin, WANG Tong-Tong, GAO Jin-Song, LI Shuai, SUN Ya-Jun, LIU Gui-Lin. Floquet Topological Insulator in the BHZ Model with the Polarized Optical Field[J]. Chin. Phys. Lett., 2014, 31(03): 057301
[8] YU Wing-Chi, WANG Li-Gang, GU Shi-Jian, and LIN Hai-Qing. Scaling of the Leading Response in Linear Quench Dynamics in the Quantum Ising Model[J]. Chin. Phys. Lett., 2012, 29(8): 057301
[9] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 057301
[10] WANG Ping, ZHENG Qiang, WANG Wen-Ge. Decay of Loschmidt Echo at a Critical Point in the Lipkin-Meshkov-Glick model[J]. Chin. Phys. Lett., 2010, 27(8): 057301
[11] ZHOU Zong-Li, ZHANG Guo-Shun, LOU Ping,. Spin-charge Separation of the Luttinger Model after an Interaction Quench[J]. Chin. Phys. Lett., 2010, 27(6): 057301
[12] ZHONG Hong-Wei, XU Hai-Qing, HUANG Ping-Hua. Time-Dependent Variational Approach to Ground-State Phase Transition and Phonon Dispersion Relation of the Quantum Double-Well Model[J]. Chin. Phys. Lett., 2008, 25(8): 057301
[13] GU Shi-Jian, TIAN Guang-Shan, LIN Hai-Qing. Pairwise Entanglement and Quantum Phase Transitions in Spin Systems[J]. Chin. Phys. Lett., 2007, 24(10): 057301
[14] TU Tao, ZHAO Yong-Jie GUO Guo-Ping, HAO Xiao-Jie, GUO Guang-Can. Form of Scaling Function in Quantum Hall Plateau Transitions[J]. Chin. Phys. Lett., 2007, 24(5): 057301
[15] PANG Chao-Yang, LI Yu-Liang. Dynamics of Genuine Three-Qubit Entanglement in Ising Spin Systems[J]. Chin. Phys. Lett., 2006, 23(12): 057301
Full text