Chin. Phys. Lett.  2018, Vol. 35 Issue (11): 119401    DOI: 10.1088/0256-307X/35/11/119401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Effect of Kinetic Alfvén Waves on Electron Transport in an Ion-Scale Flux Rope
Bin-Bin Tang1**, Wen-Ya Li1, Chi Wang1, Lei Dai1, Jin-Peng Han2
1State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190
2Research and Development Center, China Academy of Launch Vehicle Technology, Beijing 100076
Cite this article:   
Bin-Bin Tang, Wen-Ya Li, Chi Wang et al  2018 Chin. Phys. Lett. 35 119401
Download: PDF(2772KB)   PDF(mobile)(2423KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract At the Earth's magnetopause, the electron transport due to kinetic Alfvén waves (KAWs) is investigated in an ion-scale flux rope by the Magnetospheric Multiscale mission. Clear electron dropout around 90$^{\circ}$ pitch angle is observed throughout the flux rope, where intense KAWs are identified. The KAWs can effectively trap electrons by the wave parallel electric field and the magnetic mirror force, allowing electrons to undergo Landau resonance and be transported into more field-aligned directions. The pitch angle range for the trapped electrons is estimated from the wave analysis, which is in good agreement with direct pitch angle measurements of the electron distributions. The newly formed beam-like electron distribution is unstable and excites whistler waves, as revealed in the observations. We suggest that KAWs could be responsible for the plasma depletion inside a flux rope by this transport process, and thus be responsible for the formation of a typical flux rope.
Received: 06 August 2018      Published: 23 October 2018
PACS:  94.05.Pt (Wave/wave, wave/particle interactions)  
  94.30.ch (Magnetopause)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 41474145, 41574159, 41731070 and 41504114, the Frontier Science Foundation of the Chinese Academy of Sciences under Grant No QYZDJ-SSW-JSC028, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA15052500, and the Specialized Research Fund for State Key Laboratories of China.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/35/11/119401       OR      http://cpl.iphy.ac.cn/Y2018/V35/I11/119401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin-Bin Tang
Wen-Ya Li
Chi Wang
Lei Dai
Jin-Peng Han
[1]Russell C T and Elphic R C 1978 Space Sci. Rev. 22 681
[2]Paschmann G et al 1982 J. Geophys. Res. 87 2159
[3]Hasegawa H et al 2010 Geophys. Res. Lett. 37 L16101
[4]Pu Z Y et al 2013 Geophys. Res. Lett. 40 3502
[5]Farrugia C J et al 1988 J. Geophys. Res. 93 14465
[6]Zhang H et al 2010 J. Geophys. Res. 115 A08229
[7]Lee L C and Fu Z F 1985 Geophys. Res. Lett. 12 105
[8]Raeder J 2006 Ann. Geophys. 24 381
[9]Chen Y et al 2017 J. Geophys. Res.: Space Phys. 122 10318
[10]Øieroset M et al 2014 J. Geophys. Res. 119 6256
[11]Huang S Y et al 2016 Geophys. Res. Lett. 43 7850
[12]Holleweg J V 1999 J. Geophys. Res. 104 14811
[13]Stasiewicz K et al 2000 Space Sci. Rev. 92 423
[14]Gershman D J et al 2017 Nat. Commun. 8 14719
[15]Artemyev A V et al 2015 J. Geophys. Res.: Space Phys. 120 10305
[16]Damiano P A et al 2015 J. Geophys. Res.: Space Phys. 120 5623
[17]Sahraoui F et al 2009 Phys. Rev. Lett. 102 231102
[18]Dai L 2009 Phys. Rev. Lett. 102 245003
[19]Dai L et al 2017 Geophys. Res. Lett. 44 634
[20]Dai L 2018 J. Geophys. Res.: Space Phys. 123 (accepted)
[21]Wygant J R et al 2002 J. Geophys. Res. 107 (A8) 1201
[22]Chaston C C et al 2008 Phys. Rev. Lett. 100 175003
[23]Burch J L et al 2016 Science 352 aaf2939
[24]Pollock C et al 2016 Space Sci. Rev. 199 331
[25]Russell C T et al 2016 Space Sci. Rev. 199 189
[26]Le Contel O et al 2016 Space Sci. Rev. 199 257
[27]Lindqvist P A et al 2016 Space Sci. Rev. 199 137
[28]Ergun R E et al 2016 Space Sci. Rev. 199 167
[29]Santolik O et al 2003 Radio Sci. 38 1
[30]Hunana P et al 2013 Astrophys. J. 766 93
[31]Johnson J R and Cheng C Z 2001 Geophys. Res. Lett. 28 4421
[32]Hasegawa A and Chen L 1976 Phys. Rev. Lett. 36 1362
[33]Karney C F F 1978 Phys. Fluids 21 1584
[34]Mourenas D et al 2015 J. Geophys. Res. 120 3665
[35]Rönnmark K 1982 WHAMP—Waves in Homogeneous, Anisotropic Multicomponent Plasmas (Reports No. 179) (Kiruna, Sweden: Kiruna Geophysical Institute)
[36]Thorne R M et al 2010 Nature 467 943
[37]Mourenas D et al 2012 J. Geophys. Res. 117 A10212
[38]O'Neil T 1965 Phys. Fluids 8 2255
[39]Howes G G et al 2006 Astrophys. J. 651 590
[40]Artemyev A V et al 2017 J. Geophys. Res.: Space Phys. 122 5519
Related articles from Frontiers Journals
[1] HE Peng, GAO Xin-Liang, LU Quan-Ming, ZHAO Jin-Song. Parametric Instabilities of Parallel Propagating Circularly Polarized Alfvén Waves: One-Dimensional Hybrid Simulations[J]. Chin. Phys. Lett., 2015, 32(11): 119401
[2] YANG Zhong-Wei, LU Quan-Ming, WANG Shui. Ion Velocity Distributions in a Non-Stationary Perpendicular Shock[J]. Chin. Phys. Lett., 2010, 27(1): 119401
[3] FU Hui-Shan, CAO Jin-Bin, YANG Biao, Lucek E, Rème H, Dandouras I. ULF Waves Associated with Solar Wind Deceleration in the Earth's Foreshock[J]. Chin. Phys. Lett., 2009, 26(11): 119401
Viewed
Full text


Abstract