Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 018101    DOI: 10.1088/0256-307X/35/1/018101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Deformation and Spallation of Explosive Welded Steels under Gas Gun Shock Loading
Ying Yu1,2,3, Chao Li2,3**, Hong-Hao Ma4, Mei-Lan Qi1**, Sheng-Nian Luo2,3**
1School of Science, Wuhan University of Technology, Wuhan 430070
2Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031
3The Peac Institute of Multiscale Sciences, Chengdu 610207
4CAS Key Laboratory of Materials Behavior and Design, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
Download: PDF(6219KB)   PDF(mobile)(6214KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate deformation and spallation of explosive welded bi-steel plates under gas gun shock loading. Free surface histories are measured to obtain the Hugoniot elastic limit and spall strengths at different impact velocities. Pre- and post-shock microstructures are characterized with optical metallography, scanning electron microscopy, and electron backscatter diffraction. In addition, the Vickers hardness test is conducted. Explosive welding can result in a wavy steel/steel interface, an ultrafine grain region centered at the interface, and a neighboring high deformation region, accompanied by a hardness with the highest value at the interface. Additional shock compression induces a further increase in hardness, and shock-induced deformation occurs in the form of twinning and dislocation slip and depends on the local substructure. Spall damage nucleates and propagates along the ultrafine grain region, due to the initial cracks or weak interface bonding. Spall strengths of bimetal plates can be higher than its constituents. Plate impact offers a promising method for improving explosive welding.
Received: 25 September 2017      Published: 17 December 2017
PACS:  81.05.Bx (Metals, semimetals, and alloys)  
  81.20.Vj (Joining; welding)  
  81.70.Bt (Mechanical testing, impact tests, static and dynamic loads)  
  62.20.F- (Deformation and plasticity)  
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB845904, and the National Natural Science Foundation of China under Grant Nos 11627901, 11372113 and 11672110.
TRENDMD:   
Cite this article:   
Ying Yu, Chao Li, Hong-Hao Ma et al  2018 Chin. Phys. Lett. 35 018101
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/018101       OR      http://cpl.iphy.ac.cn/Y2018/V35/I1/018101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ying Yu
Chao Li
Hong-Hao Ma
Mei-Lan Qi
Sheng-Nian Luo
[1]Mendes R, Ribeiroand J and Loureiro A 2013 Mater. Des. 51 182
[2]Han J H, Ahn J P and Shin M C 2003 J. Mater. Sci. 38 13
[3]E J C, Huang J Y, Bie B X, Sun T, Fezzaa K, Xiao X H, Sun W and Luo S N 2016 Mater. Sci. Eng. A 674 308
[4]Mousavi S A A A and Sartangi P F 2008 Mater. Sci. Eng. A 494 329
[5]Meyers M A 1994 Dynamic Behavior Of Materials (New York: John Wiley & Sons) p 45
[6]Zhuang S M, Ravichandrani G and Grady D E 2003 J. Mech. Phys. Solids 51 245
[7]Bie B X, Han J H, Lu L, Zhou X M, Qi M L, Zhang Z and Luo S N 2015 Compos. Part A 68 282
[8]Xia H B, Wang S G and Ben H F 2014 Mater. Des. 56 1014
[9]Zhang L J, Pei Q, Zhang J X, Bie Z Y and Li P C 2014 Mater. Des. 64 462
[10]Fronczek D M, Wojewoda-Budka J, Chulist J R, Sypien A, Korneva A, Szulc Z, Schell N and Zieba F 2016 Mater. Des. 91 80
[11]Zaretsky E B 2016 Light Gas Gun (Berlin: Springer) vol 10 p 3
[12]Li C, Li B, Huang J Y, Ma H H, Zhu M H, Zhu J and Luo S N 2016 Mater. Sci. Eng. A 660 139
[13]Wang Y G, Qi M L, He H L and Wang L L 2014 Mech. Mater. 69 270
[14]Qi M L, He H L and Yan S L 2007 Chin. Phys. Lett. 24 2338
[15]Wang Y G, Hu J D, Qi M L and He H L 2011 Acta Phys. Sin. 60 126201 (in Chinese)
[16]Zurek A K, Thissell W R, Johnson J N, Tonks D L and Hixson R 1996 J. Mater. Process. Technol. 60 261
[17]Chu X and Barnett S A 1995 J. Appl. Phys. 77 4403
[18]Salem A A, Kalidindi S R, Doherty R D and Semiatin S L Metall. Mater. Trans. A 37 259
[19]Visser W and Ghonem H 2017 Mater. Sci. Eng. A 687 28
[20]Mahajan S 1969 Phys. Status Solidi 33 291
[21]Lindley T C 1965 Acta Metall. 13 681
[22]Blazynski T Z 1983 Exploxive Welding, Forming and Compaction (New York: Springer) p 94
[23]Durgutlu A, Gulenc B and Findik F 2005 Mater. Des. 26 497
[24]Jiang W H, Guan H R and Hu Z Q 1999 Mater. Sci. Eng. A 271 101
[25]Gavriljuk V G, Shivanyuk V N and Shanina B D 2005 Acta Mater. 53 5017
[26]Christian J and Mahajan S 1995 Prog. Mater. Sci. 39 1
[27]Seaman L, Barbee Jr T W and Curran D R Dynamic Fracture Criteria of Homogeneous Materials (Menlo Park, June 1970–October 1971)
Related articles from Frontiers Journals
[1] Yu-Cong Liu, Jia-Dong Chen, Hui-Yong Deng, Gu-Jin Hu, Xiao-Shuang Chen, Ning Dai. High-Quality Bi$_{2}$Te$_{3}$ Single Crystalline Films on Flexible Substrates and Bendable Photodetectors[J]. Chin. Phys. Lett., 2016, 33(10): 018101
[2] Ru-Dai Quan, Jin-Cheng Zhang, Ya-Chao Zhang, Wei-Hang Zhang, Ze-Yang Ren, Yue Hao. Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(10): 018101
[3] Ru-Dai Quan, Jin-Cheng Zhang, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ya-Chao Zhang, Ze-Yang Ren, Yue Hao. Fabrication of GaN-Based Heterostructures with an InAlGaN/AlGaN Composite Barrier[J]. Chin. Phys. Lett., 2016, 33(08): 018101
[4] Ru-Dai Quan, Jin-Cheng Zhang, Sheng-Rui Xu, Jun-Shuai Xue, Yi Zhao, Jing Ning, Zhi-Yu Lin, Ze-Yang Ren, Yue Hao. Growth of InAlGaN Quaternary Alloys by Pulsed Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(04): 018101
[5] Shi-Hua Fu, Yu-Long Cai, Su-Li Yang, Qing-Chuan Zhang, Xiao-Ping Wu. The Mechanism of Critical Strain of Serrated Yielding in Strain Rate Domain[J]. Chin. Phys. Lett., 2016, 33(02): 018101
[6] ZHANG Pin-Liang, GONG Zi-Zheng, JI Guang-Fu, WANG Qing-Song, SONG Zhen-Fei, CAO Yan, WANG Xiang. Shock Compression of the New 47Zr45Ti5Al3V Alloys up to 200 GPa[J]. Chin. Phys. Lett., 2013, 30(6): 018101
[7] LIU Dong-Huan, SHANG Xin-Chun. The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification[J]. Chin. Phys. Lett., 2013, 30(3): 018101
[8] JIANG Hong-Xiang, and ZHAO Jiu-Zhou. Effect Mechanism of a Direct Current on the Solidification of Immiscible Alloys[J]. Chin. Phys. Lett., 2012, 29(8): 018101
[9] YANG Tao, CHEN Zheng, ZHANG Jing, DONG Wei-Ping, WU Lin. Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method[J]. Chin. Phys. Lett., 2012, 29(7): 018101
[10] YAN Na, DAI Fu-Ping, WANG Wei-Li, WEI Bing-Bo** . Crystal Growth in Al72.9Ge27.1 Alloy Melt under Acoustic Levitation Conditions[J]. Chin. Phys. Lett., 2011, 28(7): 018101
[11] ZHAI Feng-Xiao, ZUO Fang-Yuan, HUANG Huan, WANG Yang, LAI Tian-Shu, WU Yi-Qun, GAN Fu-Xi. Optical Switch Formation in Antimony Super-Resolution Mask Layers Induced by Picosecond Laser Pulses[J]. Chin. Phys. Lett., 2010, 27(1): 018101
[12] ZHU Zun-Lue, FU Hong-Zhi, SUN Jin-Feng, LIU Yu-Fang, SHI De-Heng, XU Guo-Liang. First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide[J]. Chin. Phys. Lett., 2009, 26(8): 018101
[13] ZHANG Li, HE Qing, JIANG Wei-Long, LI Chang-Jian, SUN Yun. Cu(In, Ga)Se2 Thin Films on Flexible Polyimide Sheet: Structural and Electrical Properties versus Composition[J]. Chin. Phys. Lett., 2009, 26(2): 018101
[14] FAN Zhen-Jun, PAN Feng, ZHANG Dian-Lin. Growth of High-Quality Decagonal Al-Cu-Co Quasicrystals from Ternary Melt[J]. Chin. Phys. Lett., 2009, 26(2): 018101
[15] CHEN Dong, XIAO Qi-Min, ZHAO Ying-Lu, YU Ben-Hai, WANG Chun-Lei, SHI De-Heng. First-Principles Calculations of Elastic Properties of Cubic Ni2MnGa[J]. Chin. Phys. Lett., 2009, 26(1): 018101
Viewed
Full text


Abstract