Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 017502    DOI: 10.1088/0256-307X/35/1/017502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Stepping Stone Mechanism: Carrier-Free Long-Range Magnetism Mediated by Magnetized Cation States in Quintuple Layer
Chunkai Chan, Xiaodong Zhang, Yiou Zhang, Kinfai Tse, Bei Deng, Jingzhao Zhang, Junyi Zhu
1Department of Physics, Chinese University of Hong Kong, Hong Kong
Cite this article:   
Chunkai Chan, Xiaodong Zhang, Yiou Zhang et al  2018 Chin. Phys. Lett. 35 017502
Download: PDF(1629KB)   PDF(mobile)(1616KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The long-range magnetism observed in group-V tellurides quintuple layers is the only working example of carrier-free dilute magnetic semiconductors (DMS), whereas the physical mechanism is unclear, except the speculation on the band topology enhanced van Vleck paramagnetism. Based on DFT calculations, we find a stable long-range ferromagnetic order in a single quintuple layer of Cr-doped Bi$_2$Te$_3$ or Sb$_2$Te$_3$, with the dopant separation more than 9 Å. This configuration is the global energy minimum among all configurations. Different from the conventional super exchange theory, the magnetism is facilitated by the lone pair derived anti-bonding states near the cations. Such anti-bonding states work as stepping stones merged in the electron sea and conduct magnetism. Further, spin orbit coupling induced band inversion is found to be insignificant in the magnetism. Therefore, our findings directly dismiss the common misbelief that band topology is the only factor that enhances the magnetism. We further demonstrate that removal of the lone pair derived states destroys the long-range magnetism. This novel mechanism sheds light on the fundamental understanding of long-range magnetism and may lead to discoveries of new classes of DMS.
Received: 19 October 2017      Published: 03 December 2017
PACS:  75.50.Pp (Magnetic semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.70.Gm (Exchange interactions)  
  75.30.Hx (Magnetic impurity interactions)  
Fund: Supported by Chinese University of Hong Kong (CUHK) under Grant No 4053084, University Grants Committee of Hong Kong under Grant No 24300814, and the Start-up Funding of CUHK.
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/017502       OR      http://cpl.iphy.ac.cn/Y2018/V35/I1/017502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chunkai Chan
Xiaodong Zhang
Yiou Zhang
Kinfai Tse
Bei Deng
Jingzhao Zhang
Junyi Zhu
[1]Wang X, Du K, Liu Y Y F, Hu P, Zhang J, Zhang Q, Owen M H S, Lu X, Gan C K, Sengupta P, Kloc C and Xiong Q 2016 {2D Mater.} 3 031009
[2]Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao, W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[3]Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[4]Zhang J, Chang C Z, Zhang Z, Wen J, Feng X, Li K, Liu M, He K, Wang L, Chen X, Xue Q K, Ma X and Wang Y 2011 Nat. Commun. 2 574
[5]Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, M X C and Xue Q K 2013 Science 340 167
[6]Chang C, Zhang J, Liu M, Zhang Z, Feng X, Li K, Wang L, Chen X, Dai X and Fang Z 2013 Adv. Mater. 25 1065
[7]Chang C Z, Zhao W W, Kim D Y, Zhang H J, Assaf B A, Heiman D, Zhang S C, Liu C X, Chan M H W and Moodera S J 2015 Nat. Mater. 14 473
[8]Bestwick A J, Fox E J, Kou X, Pan L, Wang, K L and Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201
[9]Feng Y, Feng X, Ou Y B, Wang J, Liu C, Zhang L G, Zhao D Y, Jiang G Y, Zhang S C, He K, Ma X, Xue Q K and Wang Y 2015 Phys. Rev. Lett. 115 126801
[10]Feng X, Feng Y, Wang J, Ou Y B, Hao Z Q, Liu C, Zhang, Z C, Zhang L G, Lin C X, Liao J, Li Y Q, Wang L L, Ji S H, Chen X, Ma X C, Zhang S C, Wang Y Y, He K and Xue Q K 2016 Adv. Mater. 28 6386
[11]Kou X F, Guo S T, Fan Y B, Pan L, Lang M R, Jiang Y, Shao Q M, Nie T X, Murata K, Tang J S, Wang Y, He L, Lee T K, Lee W L and Wang K L 2014 Phys. Rev. Lett. 113 137201
[12]Kou X, Fan Y, Lang M, Upadhyaya P and Wang K L 2015 Solid State Commun. 215-216 34
[13]Kou X F, Pan L, Wang J, Fan Y B, Choi E S, Lee W L, Nie T X, Murata K, Shao Q M, Zhang S C and Wang K L 2015 Nat. Commun. 6 8474
[14]Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[15]Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[16]Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
[17]Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[18]Qi X and Zhang S 2011 Rev. Mod. Phys. 83 1057
[19]Checkelsky J G, Ye J, Onose Y, Iwasa Y and Tokura Y 2012 Nat. Phys. 8 729
[20]Anderson P W 1950 Phys. Rev. 79 350
[21]Goodenough J B 1955 Phys. Rev. 100 564
[22]Kanamori J 1959 J. Phys. Chem. Solids 10 87
[23]Zhang J M, Zhu W G, Zhang Y, Xiao D and Yao Y G 2012 Phys. Rev. Lett. 109 266405
[24]Deng B, Zhang Y O, Zhang S B, Wang Y Y, He K and Zhu J Y 2016 Phys. Rev. B 94 054113
[25]Vergniory M G, Otrokov M M, Thonig D, Hoffmann M, Maznichenko I V, Geilhufe M, Zubizarreta X, Ostanin S, Marmodoro A, Henk J, Hergert W, Mertig I, Chulkov E V and Ernst A 2014 Phys. Rev. B 89 165202
[26]Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H and Zeller R 2010 Rev. Mod. Phys. 82 1633
[27]Zunger A, Lany S and Raebiger H 2010 Physics 3 53
[28]Kresse G and Furthmller J 1996 Phys. Rev. B 54 11169
[29]Chang C Z, Tang P, Wang Y L, Feng X, Li K, Zhang Z, Wang Y, Wang L L, Chen X, Liu C, Duan W, He K, Ma X C and Xue Q K 2014 Phys. Rev. Lett. 112 056801
[30]Slipukhina I, Mavropoulos P, Blügel S and Le?ai? M 2011 Phys. Rev. Lett. 107 137203
[31]Pl? tz W, Fabian J and Hohenester U 2007 Modern Aspects of Spin Physics (Berlin: Spinger)
[32]Ye M, Li W, Zhu S, Takeda Y, Saitoh Y, Wang J, Pan H, Nurmamat M, Sumida K and Ji F 2015 Nat. Commun. 6 8913
[33]Dyck J S, Dra?ar ?, Lo?t'ák P and Uher C 2005 Phys. Rev. B 71 115214
[34]Zhou Z, Chien Y J and Uher C 2006 Phys. Rev. B 74 224418
Related articles from Frontiers Journals
[1] Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu. Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite[J]. Chin. Phys. Lett., 2020, 37(2): 017502
[2] Baoyue Li, Yifeng Cao, Lin Xu, Guang Yang, Zhi Ma, Miao Ye, Tianxing Ma. Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(6): 017502
[3] Fei Sun, Cong Xu, Shuang Yu, Bi-Juan Chen, Guo-Qiang Zhao, Zheng Deng, Wen-Ge Yang, Chang-Qing Jin. Synchrotron X-Ray Diffraction Studies on the New Generation Ferromagnetic Semiconductor Li(Zn,Mn)As under High Pressure[J]. Chin. Phys. Lett., 2017, 34(6): 017502
[4] Chao-Jing Lin, You-Guo Shi, Yong-Qing Li. Analytical Descriptions of Magnetic Properties and Magnetoresistance in n-Type HgCr$_2$Se$_4$[J]. Chin. Phys. Lett., 2016, 33(07): 017502
[5] LI Hang, ZHANG Xin-Hui. Evaluation of the Ultrafast Thermal Manipulation of Magnetization Precession in Ferromagnetic Semiconductor (Ga,Mn)As[J]. Chin. Phys. Lett., 2015, 32(06): 017502
[6] PAN Dong, WANG Si-Liang, WANG Hai-Long, YU Xue-Zhe, WANG Xiao-Lei, ZHAO Jian-Hua. Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy[J]. Chin. Phys. Lett., 2014, 31(07): 017502
[7] XIA Yu-Qian, SUN Lei, XU Hao, HAN Jing-Wen, ZHANG Yi-Bo, WANG Yi, ZHANG Sheng-Dong. Magnetic Properties of Co-Doped TiO2 Films Grown on TiN Buffered Silicon Substrates[J]. Chin. Phys. Lett., 2014, 31(2): 017502
[8] Hassen Dakhlaoui. Quantum Size and Doping Concentration Effects on the Current-Voltage Characteristics in GaN Resonant Tunneling Diodes[J]. Chin. Phys. Lett., 2013, 30(7): 017502
[9] SUN Shao-Hua, WU Ping, XING Peng-Fei . Room-Temperature d0 Ferromagnetism in Nitrogen-Doped In2O3 Films[J]. Chin. Phys. Lett., 2013, 30(7): 017502
[10] JIANG Feng-Xian, XI Shi-Bo, MA Rong-Rong, QIN Xiu-Fang, FAN Xiao-Chen, ZHANG Min-Gang, ZHOU Jun-Qi, XU Xiao-Hong. Room-Temperature Ferromagnetism in Fe/Sn-Codoped In2O3 Powders and Thin Films[J]. Chin. Phys. Lett., 2013, 30(4): 017502
[11] CHEN Zhi-Yuan, CHEN Zhi-Quan, PAN Rui-Kun, WANG Shao-Jie. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study[J]. Chin. Phys. Lett., 2013, 30(2): 017502
[12] XI Shi-Bo, CUI Ming-Qi, QIN Xiu-Fang, XU Xiao-Hong, XU Wei, ZHENG Lei, ZHOU Jing, LIU Li-Juan, YANG Dong-Liang, GUO Zhi-Ying. Origin of Ferromagnetism in Zn1−xCoxO Thin Films: Evidences Provided by Hard and Soft X-Ray Absorption Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(12): 017502
[13] Murtaza Saleem, Saadat A. Siddiqi, Shahid M. Ramay, Shahid Atiq, Shahzad Naseem. Origin of Ferromagnetism in Al and Ni Co-doped ZnO Based DMS Materials[J]. Chin. Phys. Lett., 2012, 29(10): 017502
[14] Murtaza Saleem**, Saadat A. Siddiqi, Shahid Atiq, M. Sabieh Anwar . Structural and Magnetic Studies of Zn0.95Co0.05O and Zn0.90Co0.05Al0.05O[J]. Chin. Phys. Lett., 2011, 28(11): 017502
[15] QIN Yu-Feng, YAN Shi-Shen, KANG Shi-Shou, XIAO Shu-Qin, LI Qiang, DAI Zheng-Kun, SHEN Ting-Ting, DAI You-Yong**, LIU Guo-Lei, CHEN Yan-Xue, MEI Liang-Mo, ZHANG Ze . Electric and Magnetic Field Tunable Rectification and Magnetoresistance in FexGe1−x/Ge Heterojunction Diodes[J]. Chin. Phys. Lett., 2011, 28(10): 017502
Viewed
Full text


Abstract