Chin. Phys. Lett.  2018, Vol. 35 Issue (1): 017302    DOI: 10.1088/0256-307X/35/1/017302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Strain Effects on Properties of Phosphorene and Phosphorene Nanoribbons: a DFT and Tight Binding Study
Ruo-Yu Zhang1, Ji-Ming Zheng2**, Zhen-Yi Jiang1**
1Department of Physics, Northwest University, Xi'an 710069
2National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069
Cite this article:   
Ruo-Yu Zhang, Ji-Ming Zheng, Zhen-Yi Jiang 2018 Chin. Phys. Lett. 35 017302
Download: PDF(1046KB)   PDF(mobile)(1039KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We perform comprehensive density functional theory calculations of strain effect on electronic structure of black phosphorus (BP) and on BP nanoribbons. Both uniaxial and biaxial strain are applied, and the dramatic change of BP's band structure is observed. Under 0–8% uniaxial strain, the band gap can be modulated in the range of 0.55–1.06 eV, and a direct–indirect band gap transition causes strain over 4% in the $y$ direction. Under 0–8% biaxial strain, the band gap can be modulated in the range of 0.35–1.09 eV, and the band gap maintains directly. Applying strain to BP nanoribbon, the band gap value reduces or enlarges markedly either zigzag nanoribbon or armchair nanoribbon. Analyzing the orbital composition and using a tight-binding model we ascribe this band gap behavior to the competition between effects of different bond lengths on band gap. These results would enhance our understanding on strain effects on properties of BP and phosphorene nanoribbon.
Received: 28 August 2017      Published: 17 December 2017
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  73.20.-r (Electron states at surfaces and interfaces)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 51572219 and 11447030, the Natural Science Foundation of Shaanxi Province of China under Grant Nos 2014JM2-1008 and 2015JM1018, and the State Key Laboratory of Transient Optics and Photonics Technology 2015 Annual Open Fund under Grant No SKLST200915.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/35/1/017302       OR      https://cpl.iphy.ac.cn/Y2018/V35/I1/017302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ruo-Yu Zhang
Ji-Ming Zheng
Zhen-Yi Jiang
[1]Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2]Elias D C, Nair R R, Mohiuddin T M, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[3]Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[4]Najmaei S, Liu Z, Zhou W, Zou X, Shi G, Lei S, Yakobson B I, Idrobo J C, Ajayan P M and Lou J 2013 Nat. Mater. 12 754
[5]Chen D and Pei Q 2017 Chem. Rev. 117 11239
[6]Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[7]Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[8]Du Y, Ouyang C, Shi S and Lei M 2010 J. Appl. Phys. 107 093718
[9]Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[10]Guo H, Lu N, Dai J, Wu X and Zeng X C 2014 J. Phys. Chem. C 118 14051
[11]Fuhrer M S and Hone J 2013 Nat. Nanotechnol. 8 146
[12]Han X, Morgan Stewart H, Shevlin S A, Catlow C R A and Guo Z X 2014 Nano Lett. 14 4607
[13]Zhang R, Li B and Yang J 2015 J. Phys. Chem. C 119 2871
[14]Fei R Y L 2014 Nano Lett. 14 2884
[15]Hashmi A and Hong J 2015 J. Phys. Chem. C 119 9198
[16]Zheng Z D, Wang X C and Mi W B 2017 Physica E 94 148
[17]Ju W, Li T, Wang H, Yong Y and Sun J 2015 Chem. Phys. Lett. 622 109
[18]Su X, Zhang R, Guo C, Zheng J and Ren Z 2014 Phys. Lett. A 378 745
[19]Peng X, Wei Q and Copple A 2014 Phys. Rev. B 90 085402
[20]Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[21]Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[22]Castellanos Gomez A, Poot M, Steele G A, Zant H S J V D, Agraït N and Rubio Bollinger G 2012 Nanoscale Res. Lett. 7 233
[23]Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[24]Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[25]Ramasubramaniam A and Muniz A R 2014 Phys. Rev. B 90 085424
[26]Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368
[27]Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[28]Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[29]Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30]Rudenko A N and Katsnelson M I 2014 Phys. Rev. B 89 201408
[31]Lu Y, Zhou D, Chang G, Guan S, Chen W, Jiang Y, Jiang J, Wang X s, Yang S A, Feng Y P, Kawazoe Y and Lin H 2016 NPJ Comput. Mater. 2 16011
[32]Yuan Y W and Cheng F 2017 AIP Adv. 7 075310
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 017302
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 017302
[3] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 017302
[4] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 017302
[5] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 017302
[6] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 017302
[7] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 017302
[8] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 017302
[9] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 017302
[10] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 017302
[11] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 017302
[12] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 017302
[13] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 017302
[14] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 017302
[15] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 017302
Viewed
Full text


Abstract