Chin. Phys. Lett.  2017, Vol. 34 Issue (6): 067301    DOI: 10.1088/0256-307X/34/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Coulomb-Dominated Oscillations in Fabry–Perot Quantum Hall Interferometers
Yu-Ying Zhu1,2, Meng-Meng Bai1,2, Shu-Yu Zheng1, Jie Fan1, Xiu-Nian Jing1,3, Zhong-Qing Ji1, Chang-Li Yang1,3, Guang-Tong Liu1**, Li Lu1,3
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Collaborative Innovation Center of Quantum Matter, Beijing 100871
Cite this article:   
Yu-Ying Zhu, Meng-Meng Bai, Shu-Yu Zheng et al  2017 Chin. Phys. Lett. 34 067301
Download: PDF(962KB)   PDF(mobile)(955KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Periodic resistance oscillations in Fabry–Perot quantum Hall interferometers are observed at integer filling factors of the constrictions, $f_{\rm c}=1$, 2, 3, 4, 5 and 6. Rather than the Aharonov–Bohm interference, these oscillations are attributed to the Coulomb interactions between interfering edge states and localized states in the central island of an interferometer, as confirmed by the observation of a positive slope for the lines of constant oscillation phase in the image plot of resistance in the $B$–$V_{\rm S}$ plane. Similar resistance oscillations are also observed when the area $A$ of the center regime and the backscattering probability of interfering edge states are varied, by changing the side-gate voltages and the configuration of the quantum point contacts, respectively. The oscillation amplitudes decay exponentially with temperature in the range of 40 mK$ < T\leq 130$ mK, with a characteristic temperature $T_{\rm 0}\sim 25$ mK, consistent with recent theoretical and experimental works.
Received: 09 March 2017      Published: 23 May 2017
PACS:  73.43.Jn (Tunneling)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.43.-f (Quantum Hall effects)  
Fund: Supported by the National Basic Research Program of China under Grant No 2014CB920904, the National Natural Science Foundation of China under Grant No 91221203, and the Strategic Priority Research Program B of the Chinese Academy of Sciences under Grant No XDB07010200.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/6/067301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I6/067301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Ying Zhu
Meng-Meng Bai
Shu-Yu Zheng
Jie Fan
Xiu-Nian Jing
Zhong-Qing Ji
Chang-Li Yang
Guang-Tong Liu
Li Lu
[1]Das Sarma S and Pinczuk A 1997 Perspectives in Quantum Hall Effect (New York: Wiley and Sons)
[2]Ezawa Z F 2008 Quantum Hall Effects: Field Theoretical Approach and Related Topics 2nd edn (Singapore: World Scientific)
[3]Chamon C de C, Freed D E, Kivelson S A, Sondhi S L and Wen X G 1997 Phys. Rev. B 55 2331
[4]Rosenow B and Halperin B I 2007 Phys. Rev. Lett. 98 106801
[5]Halperin B I, Stern A, Neder I and Rosenow B 2011 Phys. Rev. B 83 155440
[6]Willett R, Eisenstein J P, Stormer H L, Tsui D C, Gossard A C and English J H 1987 Phys. Rev. Lett. 59 1776
[7]Pan W, -S J, Shvarts V, Adams D E, Stormer H L, Tsui D C, Pfeiffer L N, Baldwin K W and West K W 1999 Phys. Rev. Lett. 83 3530
[8]Moore G and Read N 1992 Nucl. Phys. B 374 615
[9]Read N and Rezayi E 1996 Phys. Rev. B 54 16864
[10]Wen X G 1991 Phys. Rev. Lett. 66 802
[11]Bonderson P, Kitaev A and Shtengel K 2006 Phys. Rev. Lett. 96 016803
[12]Stern A and Halperin B I 2006 Phys. Rev. Lett. 96 016802
[13]Sarma S D, Freedman M and Nayak C 2005 Phys. Rev. Lett. 94 166802
[14]Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[15]van Wees B J, Kouwenhoven L P, Harmans C J P M, Williamson J G, Timmering C E, Broekaart M E I, Foxon C T and Harris J J 1989 Phys. Rev. Lett. 62 2523
[16]Bird J P, Ishibashi K, Stopa M, Aoyagi Y and Sugano T 1994 Phys. Rev. B 50 14983
[17]Camino F E, Zhou W and Goldman V J 2005 Phys. Rev. B 72 155313
[18]Camino F E, Zhou Wei and Goldman V J 2007 Phys. Rev. B 76 155305
[19]Zhang Yiming, McClure D T, Levenson-Falk E M, Marcus C M, Pfeiffer L N and West K W 2009 Phys. Rev. B 79 241304(R)
[20]Choi H, Jiang P, Godfrey M D, Kang W, Simon S H, Pfeiffer L N, West K W and Baldwin K W 2011 New J. Phys. 13 055007
[21]Camino F E, Zhou Wei and Goldman V J 2005 Phys. Rev. Lett. 95 246802
[22]Camino F E, Zhou Wei and Goldman V J 2005 Phys. Rev. B 72 075342
[23]Camino F E, Zhou Wei and Goldman V J 2006 Phys. Rev. B 74 115301
[24]Camino F E, Zhou Wei and Goldman V J 2007 Phys. Rev. Lett. 98 076805
[25]Willett R L, Pfeiffer L N and West K W 2009 Proc. Natl. Acad. Sci. USA 106 853
[26]Willett R L, Pfeiffer L N and West K W 2010 Phys. Rev. B 82 205301
[27]Ofek N, Bid A, Heiblum M, Stern A, Umansky V and Mahalu D 2010 Proc. Natl. Acad. Sci. USA 107 5276
[28]McClure D T, Chang W, Marcus C M, Pfeiffer L N and West K W 2012 Phys. Rev. Lett. 108 256804
[29]van Wees B J, van Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, van der Marel D and Foxon C T 1988 Phys. Rev. Lett. 60 848
[30]Davies H 1988 The Physics of Low-Dimensional Semiconductors (Cambridge: Cambridge University)
Related articles from Frontiers Journals
[1] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 067301
[2] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 067301
[3] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 067301
[4] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 067301
[5] Ting-Ting Wang, Xiao Wang, Xiao-Bo Li, Jin-Cheng Zhang, Jin-Ping Ao. Temperature-Dependent Characteristics of GaN Schottky Barrier Diodes with TiN and Ni Anodes[J]. Chin. Phys. Lett., 2019, 36(5): 067301
[6] SU Li-Na, LV Li, LI Xin-Xing, QIN Hua, GU Xiao-Feng. Fabrication and Characterization of a Single Electron Transistor Based on a Silicon-on-Insulator[J]. Chin. Phys. Lett., 2015, 32(4): 067301
[7] HUANG Jian, CHEN Kun-Ji, FANG Zhong-Hui, GUO Si-Hua, WANG Xiang, DINGHong-Lin, LI Wei, HUANG Xin-Fan. Origin of Electron and Hole Charging Current Peaks in Nanocrystal-Si Quantum Dot Floating Gate MOS Structure[J]. Chin. Phys. Lett., 2009, 26(3): 067301
[8] WANG Xiang, HUANG Jian, ZHANG Xian-Gao, DING Hong-Lin, YU Lin-Wei, HUANG Xin-Fan, LI Wei, XU Jun, CHEN Kun-Ji. Resonant Tunnelling and Storage of Electrons in Si Nanocrystals within a-SiNx/nc-Si/a-SiNx Structures[J]. Chin. Phys. Lett., 2008, 25(3): 067301
[9] LIU Hai-Qing, SU Shao-Kui, JING Xiu-Nian, LIU Ying, HE Lun-Hua, GE Pei-Wen, YAN Qi-Wei, WANG Yun-Ping. Magnetic Quantum Tunnelling in Faster Relaxation Process in Mn12Ac Molecular Magnets[J]. Chin. Phys. Lett., 2007, 24(2): 067301
Viewed
Full text


Abstract