Chin. Phys. Lett.  2017, Vol. 34 Issue (3): 030301    DOI: 10.1088/0256-307X/34/3/030301
GENERAL |
Improving Accuracy of Estimating Two-Qubit States with Hedged Maximum Likelihood
Qi Yin1,2, Guo-Yong Xiang1,2**, Chuan-Feng Li1,2, Guang-Can Guo1,2
1Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
Cite this article:   
Qi Yin, Guo-Yong Xiang, Chuan-Feng Li et al  2017 Chin. Phys. Lett. 34 030301
Download: PDF(1623KB)   PDF(mobile)(1623KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010) 200504] was proposed to avoid this problem. Here we study more details about this proposal in the two-qubit case and further improve its performance. We ameliorate the HMLE method by updating the hedging function based on the purity of the estimated state. Both performances of HMLE and ameliorated HMLE are demonstrated by numerical simulation and experimental implementation on the Werner states of polarization-entangled photons.
Received: 05 December 2016      Published: 28 February 2017
PACS:  03.67.-a (Quantum information)  
  03.65.Wj (State reconstruction, quantum tomography)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11574291, 61108009 and 61222504.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/34/3/030301       OR      https://cpl.iphy.ac.cn/Y2017/V34/I3/030301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi Yin
Guo-Yong Xiang
Chuan-Feng Li
Guang-Can Guo
[1]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2]Li X, Li Z F, Shi Z L and Wang X Q 2014 Chin. Phys. Lett. 31 060301
[3]Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[4]Bent N, Qassim H, Tahir A A, Sych D, Leuchs G, Sánchez-Soto L L, Karimi and Boyd R W 2015 Phys. Rev. X 5 041006
[5]Häffner H et al 2005 Nature 438 643
[6]Steffen M, Ansmann M, Bialczak R C, Katz N, Lucero E, McDermott R, Neeley M, Weig E M, Cleland A N and Martinis J M 2006 Science 313 1423
[7]Huang Y F, Ren X F, Zhang Y S, Duan L M and Guo G C 2004 Phys. Rev. Lett. 93 240501
[8]Riebe M, Kim K, Schindler P, Monz T, Schmidt P O, Körber T K, Hänsel W, Häffner H, Roos C F and Blatt R 2006 Phys. Rev. Lett. 97 220407
[9]Kelly J et al 2015 Nature 519 66
[10]Adamson R B A and Steinberg A M 2010 Phys. Rev. Lett. 105 030406
[11]Mahler D H, Rozema L A, Darabi A and Ferrie C 2013 Phys. Rev. Lett. 111 183601
[12]Hou Z B, Zhu H J, Xiang G Y, Li C F and Guo G C 2016 npj Quantum Inf. 2 16001
[13]Hradil Z 1997 Phys. Rev. A 55 R1561
[14]James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[15]Baumgratz T, Nüßeler A, Cramer M and Plenio M B 2013 New J. Phys. 15 125004
[16]Schack R, Brun T A and Caves C M 2001 Phys. Rev. A 64 014305
[17]Tanaka F and Komaki F 2005 Phys. Rev. A 71 052323
[18]Blume-Kohout R 2010 New J. Phys. 12 043034
[19]Qi B, Hou Z B, Li L, Dong D Y, Xiang G Y and Guo G C 2013 Sci. Rep. 3 3496
[20]Schumacher B 1995 Phys. Rev. A 51 2738
[21]Braunstein S L, Fuchs C A, Gottesman D and Hoi-Kwong Lo 2000 IEEE Trans. Inf. Theory 46 1644
[22]Blume-Kohout R 2010 Phys. Rev. Lett. 105 200504
[23]Lidstone G J 1920 Trans. Fac. Actuaries 8 182
[24]Ristad E S 1995 arXiv:cmp-lg/9508012
[25]Clarke B and Barron A 1994 J. Stat. Plann. Infer. 41 37
[26]Braess D, Forster J, Sauer T and Simon H U 2002 Lect. Notes Comput. Sci. 2533 153
[27]Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 030301
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 030301
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 030301
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 030301
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 030301
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 030301
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 030301
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 030301
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 030301
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 030301
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 030301
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 030301
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 030301
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 030301
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 030301
Viewed
Full text


Abstract