GENERAL |
|
|
|
|
Improving Accuracy of Estimating Two-Qubit States with Hedged Maximum Likelihood |
Qi Yin1,2, Guo-Yong Xiang1,2**, Chuan-Feng Li1,2, Guang-Can Guo1,2 |
1Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026 2Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026
|
|
Cite this article: |
Qi Yin, Guo-Yong Xiang, Chuan-Feng Li et al 2017 Chin. Phys. Lett. 34 030301 |
|
|
Abstract As a widely used reconstruction algorithm in quantum state tomography, maximum likelihood estimation tends to assign a rank-deficient matrix, which decreases estimation accuracy for certain quantum states. Fortunately, hedged maximum likelihood estimation (HMLE) [Phys. Rev. Lett. 105 (2010) 200504] was proposed to avoid this problem. Here we study more details about this proposal in the two-qubit case and further improve its performance. We ameliorate the HMLE method by updating the hedging function based on the purity of the estimated state. Both performances of HMLE and ameliorated HMLE are demonstrated by numerical simulation and experimental implementation on the Werner states of polarization-entangled photons.
|
|
Received: 05 December 2016
Published: 28 February 2017
|
|
PACS: |
03.67.-a
|
(Quantum information)
|
|
03.65.Wj
|
(State reconstruction, quantum tomography)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
|
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 11574291, 61108009 and 61222504. |
|
|
[1] | Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) | [2] | Li X, Li Z F, Shi Z L and Wang X Q 2014 Chin. Phys. Lett. 31 060301 | [3] | Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601 | [4] | Bent N, Qassim H, Tahir A A, Sych D, Leuchs G, Sánchez-Soto L L, Karimi and Boyd R W 2015 Phys. Rev. X 5 041006 | [5] | Häffner H et al 2005 Nature 438 643 | [6] | Steffen M, Ansmann M, Bialczak R C, Katz N, Lucero E, McDermott R, Neeley M, Weig E M, Cleland A N and Martinis J M 2006 Science 313 1423 | [7] | Huang Y F, Ren X F, Zhang Y S, Duan L M and Guo G C 2004 Phys. Rev. Lett. 93 240501 | [8] | Riebe M, Kim K, Schindler P, Monz T, Schmidt P O, Körber T K, Hänsel W, Häffner H, Roos C F and Blatt R 2006 Phys. Rev. Lett. 97 220407 | [9] | Kelly J et al 2015 Nature 519 66 | [10] | Adamson R B A and Steinberg A M 2010 Phys. Rev. Lett. 105 030406 | [11] | Mahler D H, Rozema L A, Darabi A and Ferrie C 2013 Phys. Rev. Lett. 111 183601 | [12] | Hou Z B, Zhu H J, Xiang G Y, Li C F and Guo G C 2016 npj Quantum Inf. 2 16001 | [13] | Hradil Z 1997 Phys. Rev. A 55 R1561 | [14] | James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312 | [15] | Baumgratz T, Nüßeler A, Cramer M and Plenio M B 2013 New J. Phys. 15 125004 | [16] | Schack R, Brun T A and Caves C M 2001 Phys. Rev. A 64 014305 | [17] | Tanaka F and Komaki F 2005 Phys. Rev. A 71 052323 | [18] | Blume-Kohout R 2010 New J. Phys. 12 043034 | [19] | Qi B, Hou Z B, Li L, Dong D Y, Xiang G Y and Guo G C 2013 Sci. Rep. 3 3496 | [20] | Schumacher B 1995 Phys. Rev. A 51 2738 | [21] | Braunstein S L, Fuchs C A, Gottesman D and Hoi-Kwong Lo 2000 IEEE Trans. Inf. Theory 46 1644 | [22] | Blume-Kohout R 2010 Phys. Rev. Lett. 105 200504 | [23] | Lidstone G J 1920 Trans. Fac. Actuaries 8 182 | [24] | Ristad E S 1995 arXiv:cmp-lg/9508012 | [25] | Clarke B and Barron A 1994 J. Stat. Plann. Infer. 41 37 | [26] | Braess D, Forster J, Sauer T and Simon H U 2002 Lect. Notes Comput. Sci. 2533 153 | [27] | Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|