Chin. Phys. Lett.  2017, Vol. 34 Issue (1): 018501    DOI: 10.1088/0256-307X/34/1/018501
Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors
Yuan Liu1,2**, Kai Liu1,2, Rong-Sheng Chen2, Yu-Rong Liu2, Yun-Fei En1, Bin Li2, Wen-Xiao Fang1**
1Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Produce Reliability and Environmental Testing Research Institute, Guangzhou 510610
2School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641
Cite this article:   
Yuan Liu, Kai Liu, Rong-Sheng Chen et al  2017 Chin. Phys. Lett. 34 018501
Download: PDF(576KB)   PDF(mobile)(569KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The total ionizing dose radiation effects in the polycrystalline silicon thin film transistors are studied. Transfer characteristics, high-frequency capacitance-voltage curves and low-frequency noises (LFN) are measured before and after radiation. The experimental results show that threshold voltage and hole-field-effect mobility decrease, while sub-threshold swing and low-frequency noise increase with the increase of the total dose. The contributions of radiation induced interface states and oxide trapped charges to the shift of threshold voltage are also estimated. Furthermore, spatial distributions of oxide trapped charges before and after radiation are extracted based on the LFN measurements.
Received: 22 June 2016      Published: 29 December 2016
PACS:  85.30.Tv (Field effect devices)  
  61.80.Ed (γ-ray effects)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.40.Qx (Microcircuit quality, noise, performance, and failure analysis)  
Fund: Supported by the National Natural Science Foundation of China under Grant Nos 61574048 and 61204112, the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2014A030313656, and the Pearl River S$\&$T Nova Program of Guangzhou.
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yuan Liu
Kai Liu
Rong-Sheng Chen
Yu-Rong Liu
Yun-Fei En
Bin Li
Wen-Xiao Fang
[1]Jelenkovic E V, Kovacevic M S, Stupar D Z et al 2013 Meas. Sci. Technol. 24 105103
[2]Liang A K, Koniczek M, Antonuk L E et al 2016 Phys. Med. Biol. 61 1968
[3]Wang K and Karim K S 2010 IEEE Electron Device Lett. 31 147
[4]Hastas N A, Dimitriadis C A, Brini J et al 2003 Microelectron. Reliab. 43 57
[5]Li Y, Antonuk L E, E I-Mohri Y et al 2006 J. Appl. Phys. 99 064501
[6]Michalas L, Papaioannou G J, Voutsas A T et al 2010 Microelectron. Reliab. 50 1848
[7]Jelenkovic E V, Kovacevic M S, Stupar D Z et al 2014 Thin Solid Films 556 535
[8]Liu Y, Chen H B, He Y J et al 2015 Acta Phys. Sin. 64 078501 (in Chinese)
[9]Barnaby H J 2006 IEEE Trans. Nucl. Sci. 53 3103
[10]Schwank J R, Shaneyfelt M R, Fleetwood D M et al 2008 IEEE Trans. Nucl. Sci. 55 1833
[11]Liu Y, Wu W J, En Y F et al 2014 IEEE Electron Device Lett. 35 369
[12]Indluru A, Holbert K E and Alford T L 2013 Thin Solid Films 539 342
[13]McWhorter P J and Winokur P S 1986 Appl. Phys. Lett. 48 133
[14]Wang M X and Gong Z 2014 IEEE Trans. Electron Devices 61 2078
[15]Deng W L, Huang J K and Li X Y 2012 IEEE Trans. Electron Devices 59 94
[16]Schwank J R, Fleetwood D M, Shaneyfelt M R et al 1993 IEEE Trans. Nucl. Sci. 40 1666
[17]Fleetwood D M, Shaneyfelt M R and Schwank J R 1994 Appl. Phys. Lett. 64 1965
[18]Liu Y, Chen H B, Liu Y R et al 2015 Chin. Phys. B 24 088503
[19]Arora N 2007 MOSFET Modeling for VLSI Simulation: Theory and Practice (Singapore: World Scientific)
[20]Fleetwood D M, Shaneyfelt M R, Warren W L et al 1995 Microelectron. Reliab. 35 403
[21]Wang M X and Wang M 2014 IEEE Trans. Electron Devices 61 3258
[22]Rahal M, Lee M, Burdett A P et al 2002 IEEE Trans. Electron Devices 49 319
[23]Dimitriadis C A, Kamarinos G and Brini J 2001 IEEE Electron Device Lett. 22 381
[24]Moschou D C, Theodorou C G, Hastas N A et al 2013 J. Disp. Technol. 9 747
[25]Francis S A, Dasgupta A and Fleetwood D M 2010 IEEE Trans. Electron Devices 57 503
[26]Jayaraman R and Sodini C G 1989 IEEE Trans. Electron Devices 36 1773
[27]Tsormpatzoglou A, Hastas N A and Mahmoudabadi F 2013 IEEE Electron Device Lett. 34 1403
Related articles from Frontiers Journals
[1] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 018501
[2] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 018501
[3] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 018501
[4] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 018501
[5] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 018501
[6] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 018501
[7] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 018501
[8] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 018501
[9] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 018501
[10] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 018501
[11] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 018501
[12] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 018501
[13] Jia-Min Gong, Quan Wang, Jun-Da Yan, Feng-Qi Liu, Chun Feng, Xiao-Liang Wang, Zhan-Guo Wang. Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer: Material Growth and Device Fabrication[J]. Chin. Phys. Lett., 2016, 33(11): 018501
[14] Shu-Juan Mao, Zheng-Yong Zhu, Gui-Lei Wang, Hui-Long Zhu, Jun-Feng Li, Chao Zhao. High-Mobility P-Type MOSFETs with Integrated Strained-Si$_{0.73}$Ge$_{0.27}$ Channels and High-$\kappa$/Metal Gates[J]. Chin. Phys. Lett., 2016, 33(11): 018501
[15] Ru-Dai Quan, Jin-Cheng Zhang, Ya-Chao Zhang, Wei-Hang Zhang, Ze-Yang Ren, Yue Hao. Fabrication of InAlGaN/GaN High Electron Mobility Transistors on Sapphire Substrates by Pulsed Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(10): 018501
Full text