Chin. Phys. Lett.  2016, Vol. 33 Issue (09): 090301    DOI: 10.1088/0256-307X/33/9/090301
GENERAL |
Computing Quantum Bound States on Triply Punctured Two-Sphere Surface
K. T. Chan1,2**, H. Zainuddin1,2, K. A. M. Atan2, A. A. Siddig3
1Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
2Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
3Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Cite this article:   
K. T. Chan, H. Zainuddin, K. A. M. Atan et al  2016 Chin. Phys. Lett. 33 090301
Download: PDF(670KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We are interested in a quantum mechanical system on a triply punctured two-sphere surface with hyperbolic metric. The bound states on this system are described by the Maass cusp forms (MCFs) which are smooth square integrable eigenfunctions of the hyperbolic Laplacian. Their discrete eigenvalues and the MCF are not known analytically. We solve numerically using a modified Hejhal and Then algorithm, which is suitable to compute eigenvalues for a surface with more than one cusp. We report on the computational results of some lower-lying eigenvalues for the triply punctured surface as well as providing plots of the MCF using GridMathematica.
Received: 17 March 2016      Published: 30 September 2016
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.40.-k (Geometry, differential geometry, and topology)  
  02.60.-x (Numerical approximation and analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/9/090301       OR      https://cpl.iphy.ac.cn/Y2016/V33/I09/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
K. T. Chan
H. Zainuddin
K. A. M. Atan
A. A. Siddig
[1]Bolte J et al 1992 Phys. Rev. Lett. 69 2188
[2]Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York: Springer-Verlag)
[3]Bogomolny E et al 1995 Chaos Solitons Fractals 5 1311
[4]Then H 2007 arXiv:0712.4322
[5]Hurt N E 2000 Mathematical Physics of Quantum Wires and Devices (Dordrecht: Kluwer Academic Publishers)
[6]Gubin A and Santos L F 2012 Am. J. Phys. 80 246
[7]Wirzba A 1999 Phys. Rep. 309 1
[8]Gabrielse G et al 1990 Quantum Electrodynamics (Singapore: World Scientific Publishing) chap 9
[9]Ginis V et al 2012 New J. Phys. 14 033007
[10]Stillwell J 1992 Geometry of Surfaces (New York: Springer-Verlag )
[11]Levay P 2000 J. Phys. A 33 4357
[12]Borthwick D 2012 Spect. Geometry 84 1
[13]Then H 2004 Math. Comput. 74 363
[14]Terras A 1985 Harmonic Analysis on Symmetric Spaces and Application I (New York: Springer-Verlag)
[15]Kubota T 1973 Elementary Theory of Eisenstein Series (New York: Tokyo and Halsted Press)
[16]Chan K T et al 2013 Chin. Phys. Lett. 30 010304
[17]Chan K T et al 2013 Sains Malays. 42 655
[18]Chan K T et al 2014 AIP Conf. Proc. 1588 230
[19]Selander B and Str?mbergsson A 2002 UUDM Report (Sweden: Uppsala University)
[20]Str?mberg 2005 PhD Dissertation (Sweden: Uppsala University)
[21]Hejhal D A and Rackner B N 1992 Exp. Math. 1 275
[22]Farmer D and Lemurell S 2005 Math. Comput. 74 1967
[23]Cunden F D et al 2016 J. Phys. A 49 18LT01
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 090301
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 090301
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 090301
[4] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 090301
[5] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 090301
[6] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 090301
[7] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 090301
[8] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 090301
[9] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 090301
[10] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 090301
[11] ZHANG Min-Cang. Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method[J]. Chin. Phys. Lett., 2013, 30(11): 090301
[12] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 090301
[13] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 090301
[14] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 090301
[15] CHAN Kar-Tim, Hishamuddin Zainuddin, Saeid Molladavoudi. Computation of Quantum Bound States on a Singly Punctured Two-Torus[J]. Chin. Phys. Lett., 2013, 30(1): 090301
Viewed
Full text


Abstract