Chin. Phys. Lett.  2016, Vol. 33 Issue (08): 086202    DOI: 10.1088/0256-307X/33/8/086202
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Analysis of the Intrinsic Uncertainties in the Laser-Driven Iron Hugoniot Experiment Based on the Measurement of Velocities
Huan Zhang1,2, Xiao-Xi Duan2, Chen Zhang2, Hao Liu2, Hui-Ge Zhang2, Quan-Xi Xue2, Qing Ye2, Zhe-Bin Wang2**, Gang Jiang1**
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
2Laser Fusion Research Center, Mianyang 621900
Cite this article:   
Huan Zhang, Xiao-Xi Duan, Chen Zhang et al  2016 Chin. Phys. Lett. 33 086202
Download: PDF(570KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models. In such cases, the contribution of intrinsic uncertainty becomes important and cannot be ignored. A detailed analysis of the intrinsic uncertainty of the aluminum–iron impedance-match experiment based on the measurement of velocities is presented. The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified. Furthermore, the comparison of intrinsic uncertainties of four different experimental approaches is presented. It is shown that, compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of Al and Fe, the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty, which would promote such work to significantly improve the diagnostics precision in such an approach.
Received: 25 January 2016      Published: 31 August 2016
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  64.30.-t (Equations of state of specific substances)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/8/086202       OR      https://cpl.iphy.ac.cn/Y2016/V33/I08/086202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huan Zhang
Xiao-Xi Duan
Chen Zhang
Hao Liu
Hui-Ge Zhang
Quan-Xi Xue
Qing Ye
Zhe-Bin Wang
Gang Jiang
[1]Benuzzi-Mounaix A et al 2002 Phys. Plasmas 9 2466
[2]Andrault D et al 2012 Nature 487 354
[3]Wang C et al 2014 Phys. Rev. E 89 023101
[4]Piron R and Blenski T 2011 Phys. Rev. E 83 026403
[5]Laio A, Bernard S and Chiarotti 2000 Science 287 1027
[6]Remington B A, Rudd R E and Wark J S 2015 Phys. Plasmas 22 090501
[7]Nora R et al 2015 Phys. Rev. Lett. 114 045001
[8]Nellis W J et al 1981 J. Chem. Phys. 75 3055
[9]Jiang G P, Huan S, Hao H et al 2013 Acta Phys. Sin. 62 016201 (in Chinese)
[10]Hao B B, Feng L P, Li P et al 2013 Chin. Phys. B 22 108301
[11]Boriskov G V et al 2005 Phys. Rev. B 71 092104
[12]Knudson M D and Desjarlais M P 2009 Phys. Rev. Lett. 103 225501
[13]Rothman S D et al 2002 Phys. Plasmas 9 1721
[14]Hicks D G et al 2005 Phys. Plasmas 12 082702
[15]Hicks D G et al 2009 Phys. Rev. B 79 014112
[16]Celliers P M et al 2005 J. Appl. Phys. 98 113529
[17]Knudson M D, Asay J R and Deeney C 2005 J. Appl. Phys. 97 073514
[18]Lyon S P and Johnson J D 1992 LANL Technical Report No. LA-CP-98-100
[19]Bevington P R 1969 Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill) p 96
[20]Da Silva L B et al 1997 Phys. Rev. Lett. 78 483
[21]Collins G W et al 1998 Science 281 1178
Related articles from Frontiers Journals
[1] Linchao Yu, Song Huang, Xiangzhuo Xing, Xiaolei Yi, Yan Meng, Nan Zhou, Zhixiang Shi, and Xiaobing Liu. Critical Current Density, Vortex Pinning, and Phase Diagram in the NaCl-Type Superconductors InTe$_{1- x}$Se$_{x}$ ($x = 0$, 0.1, 0.2)[J]. Chin. Phys. Lett., 2023, 40(3): 086202
[2] Xue Ming, Chengping He, Xiyu Zhu, Huiyang Gou, and Hai-Hu Wen. Growth and Characterization of a New Superconductor GaBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{11+\delta}$[J]. Chin. Phys. Lett., 2023, 40(1): 086202
[3] Caizi Zhang, Fangfei Li, Xinmiao Wei, Mengqi Guo, Yingzhan Wei, Liang Li, Xinyang Li, and Qiang Zhou. Abnormal Elastic Changes for Cubic-Tetragonal Transition of Single-Crystal SrTiO$_{3}$[J]. Chin. Phys. Lett., 2022, 39(9): 086202
[4] Yan Wang, Mingguang Yao, Xing Hua, Fei Jin, Zhen Yao, Hua Yang, Ziyang Liu, Quanjun Li, Ran Liu, Bo Liu, Linhai Jiang, and Bingbing Liu. Structural Evolution of $D_{5h}$(1)-C$_{90}$ under High Pressure: A Mediate Allotrope of Nanocarbon from Zero-Dimensional Fullerene to One-Dimensional Nanotube[J]. Chin. Phys. Lett., 2022, 39(5): 086202
[5] Jun-Yi Miao, Zhan-Sheng Lu, Feng Peng, and Cheng Lu. New Members of High-Energy-Density Compounds: YN$_{5}$ and YN$_{8}$[J]. Chin. Phys. Lett., 2021, 38(6): 086202
[6] Yun-Xian Liu , Chao Wang, Shuai Han , Xin Chen , Hai-Rui Sun , and Xiao-Bing Liu. Novel Superconducting Electrides in Ca–S System under High Pressures[J]. Chin. Phys. Lett., 2021, 38(3): 086202
[7] Fang Hong, Liuxiang Yang, Pengfei Shan, Pengtao Yang, Ziyi Liu, Jianping Sun, Yunyu Yin, Xiaohui Yu, Jinguang Cheng, and Zhongxian Zhao. Superconductivity of Lanthanum Superhydride Investigated Using the Standard Four-Probe Configuration under High Pressures[J]. Chin. Phys. Lett., 2020, 37(10): 086202
[8] Yu-Chen Shang, Fang-Ren Shen, Xu-Yuan Hou, Lu-Yao Chen, Kuo Hu, Xin Li, Ran Liu, Qiang Tao, Pin-Wen Zhu, Zhao-Dong Liu, Ming-Guang Yao, Qiang Zhou, Tian Cui, and Bing-Bing Liu. Pressure Generation above 35 GPa in a Walker-Type Large-Volume Press[J]. Chin. Phys. Lett., 2020, 37(8): 086202
[9] Qi-Long Cao, Duo-Hui Huang , Jun-Sheng Yang , and Fan-Hou Wang . Pressure Effects on the Transport and Structural Properties of Metallic Glass-Forming Liquid[J]. Chin. Phys. Lett., 2020, 37(7): 086202
[10] Jie-Min Xu, Shu-Yang Wang, Wen-Jun Wang, Yong-Hui Zhou, Xu-Liang Chen, Zhao-Rong Yang, and Zhe Qu. Possible Tricritical Behavior and Anomalous Lattice Softening in van der Waals Itinerant Ferromagnet Fe$_{3}$GeTe$_{2}$ under High Pressure[J]. Chin. Phys. Lett., 2020, 37(7): 086202
[11] Jingyan Song, Shuai Duan, Xin Chen, Xiangjun Li , Bingchao Yang , and Xiaobing Liu. Synthesis of Highly Stable One-Dimensional Black Phosphorus/h-BN Heterostructures: A Novel Flexible Electronic Platform[J]. Chin. Phys. Lett., 2020, 37(7): 086202
[12] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation *[J]. Chin. Phys. Lett., 0, (): 086202
[13] Jiayu Wang , Qiang Zhou , Siyang Guo , Yanping Huang , Xiaoli Huang , Lu Wang, Fangfei Li, Tian Cui . Velocity and Stability of Condensed Polymorphic SiH$_{4}$: A High-Temperature High-Pressure Brillouin Investigation[J]. Chin. Phys. Lett., 2020, 37(6): 086202
[14] Lei Gao, Qiulin Liu, Jiawei Yang, Yue Wu, Zhehong Liu, Shijun Qin, Xubin Ye, Shifeng Jin, Guodong Li, Huaizhou Zhao, Youwen Long. High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs$_{x}$[J]. Chin. Phys. Lett., 2020, 37(6): 086202
[15] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 086202
Viewed
Full text


Abstract