Chin. Phys. Lett.  2016, Vol. 33 Issue (12): 123201    DOI: 10.1088/0256-307X/33/12/123201
ATOMIC AND MOLECULAR PHYSICS |
Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions
Yue-Chun Jiao1,2, Xiao-Xuan Han1,2, Zhi-Wei Yang1,2, Jian-Ming Zhao1,2**, Suo-Tang Jia1,2
1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006
Cite this article:   
Yue-Chun Jiao, Xiao-Xuan Han, Zhi-Wei Yang et al  2016 Chin. Phys. Lett. 33 123201
Download: PDF(573KB)   PDF(mobile)(KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels $6S_{1/2}$, $6P_{3/2}$ and $nD_{5/2}$ constitute a cascade three-level system, in which a coupling laser drives the Rydberg transition, and a probe laser detects the EIT signal on the $6S_{1/2}$ to $6P_{3/2}$ transition. Rydberg EIT spectra are found to depend on the strong interaction between the Rydberg atoms. Diminished EIT transparency is obtained when the Rabi frequency of the probe laser is increased, whereas the corresponding linewidth remains unchanged. To model the system with a three-level Lindblad equation, we introduce a Rydberg-level dephasing rate $\gamma_{3}=\kappa \times (\rho_{33}/{\it \Omega}_{\rm p})^2$, with a value $\kappa$ that depends on the ground-state atom density and the Rydberg level. The simulation results are largely consistent with the measurements. The experiments, in which the principal quantum number is varied between 30 and 43, demonstrate that the EIT reduction observed at large ${\it \Omega}_{\rm p}$ is due to the strong interactions between the Rydberg atoms.
Received: 13 September 2016      Published: 29 December 2016
PACS:  32.80.Ee (Rydberg states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
Fund: Supported by the National Basic Research Program of China under Grant No 2012CB921603, Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China under Grant No IRT13076, the State Key Program of the National Natural Science of China under Grant No 11434007, the National Natural Science of China under Grant Nos 11274209, 61475090, 60378039 and 61378013, and Shanxi Scholarship Council of China (2014-009).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/33/12/123201       OR      https://cpl.iphy.ac.cn/Y2016/V33/I12/123201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue-Chun Jiao
Xiao-Xuan Han
Zhi-Wei Yang
Jian-Ming Zhao
Suo-Tang Jia
[1]Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press)
[2]Comparat D and Pillet P 2010 J. Opt. Soc. Am. B 27 A208
[3]Tong D, Farooqi S M, Stanojevic J et al 2004 Phys. Rev. Lett. 93 063001
[4]Vogt T, Viteaut M et al 2006 Phys. Rev. Lett. 97 083003
[5]Vogt T, Viteaut M et al 2007 Phys. Rev. Lett. 99 073002
[6]Jaksch D, Cirac J I et al 2000 Phys. Rev. Lett. 85 2208
[7]Lukin M D, Fleischhauer M et al 2001 Phys. Rev. Lett. 87 037901
[8]Galindo A and Martín-Delgado 2002 Rev. Mod. Phys. 74 347
[9]Isenhower L, Urban E et al 2010 Phys. Rev. Lett. 104 010503
[10]Boller J K, Imamo?lu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[11]Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98 113003
[12]Pritchard J D, Maxwell D et al 2010 Phys. Rev. Lett. 105 193603
[13]Mohapatra A K, Bason M G et al 2008 Nat. Phys. 4 890
[14]Gorniaczyk H, Tresp C et al 2014 Phys. Rev. Lett. 113 053601
[15]Tiarks D, Baur S et al 2014 Phys. Rev. Lett. 113 053602
[16]Viscor D, Li W and Lesanovsky I 2015 New J. Phys. 17 033007
[17]Dudin Y and Kuzmich A 2012 Science 336 887
[18]Tresp C, Bienias P et al 2015 Phys. Rev. Lett. 115 083602
[19]Zhang H, Zhang L et al 2014 Phys. Rev. A 90 043849
[20]Jiao Y, Li L et al 2016 Chin. Phys. B 25 053201
[21]Raitzsch U, Heidemann R et al 2009 New J. Phys. 11 055014
[22]Young L, Hill W et al 1994 Phys. Rev. A 50 2174
[23]Singer K, Stanojevic J et al 2005 J. Phys. B 38 S295-S307
[24]Gross M and Haroche S 1982 Phys. Rep. 93 301
Related articles from Frontiers Journals
[1] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 123201
[2] Huihui Wang, Yuechun Jiao, Jianming Zhao, Liantuan Xiao, and Suotang Jia. Microwave Induced Ultralong-Range Charge Migration in a Rydberg Atom[J]. Chin. Phys. Lett., 2022, 39(1): 123201
[3] Su-Ying Bai, Jing-Xu Bai, Xiao-Xuan Han, Yue-Chun Jiao, Jian-Ming Zhao, and Suo-Tang Jia. Observation of Cesium ($nD_{5/2}$+$6S_{1/2}$) Ultralong-Range Rydberg-Ground Molecules[J]. Chin. Phys. Lett., 2020, 37(12): 123201
[4] Shuang-Fei Lv, Ruohong Li, Feng-Dong Jia, Xiao-Kang Li, Jens Lassen, Zhi-Ping Zhong. Theoretical Analysis of Rydberg and Autoionizing State Spectra of Antimony[J]. Chin. Phys. Lett., 2017, 34(7): 123201
[5] JIA Guang-Rui, ZHAO Yue-Jin, ZHANG Xian-Zhou, LIU Yu-Fang, YU Kun. The Dynamics of Rubidium Atoms in THz Laser Fields[J]. Chin. Phys. Lett., 2013, 30(7): 123201
[6] YANG Zhi-Hu, XU Qiu-Mei, GUO Yi-Pan, WU Ye-Hong, SONG Zhang-Yong. Visible Light Emission in Highly Charged Kr17+ Ions Colliding with an Al Surface[J]. Chin. Phys. Lett., 2013, 30(1): 123201
Viewed
Full text


Abstract