Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 079701    DOI: 10.1088/0256-307X/32/7/079701
Glitch Crisis or Not: a Microscopic Study
LI Ang1,2**
1Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005
2State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
LI Ang 2015 Chin. Phys. Lett. 32 079701
Download: PDF(402KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The problem of glitch crisis has been a great deal of debate recently. It might challenge the standard two-component model, where glitches are thought to be triggered by the sudden unpinning of superfluid vortices in the neutron-star crust. It says that due to crustal entrainment the amount of superfluid in the crust cannot explain the changes in angular momentum required to account for the glitches. However, the argument of this crisis is based on the assumption that the core superfluid is completely coupled to the crust when a glitch happens. The fraction of the coupled core part is actually a quite uncertain problem so far. In this work, we take three possible values for the fraction of the coupled core part and study in detail the crisis problem for a 1.4 M? canonical star, based on a microscopic equation of state for the neutron star's core using the Brueckner–Hartree–Fock approach. For this purpose, two requisite parameters are chosen as follows: the core-crust transition pressure is in the range of Pt=0.2–0.65 MeV/fm3, and the fractional crust radius ΔR/R=0.082 based on experiments. To account for the possibility of a heavier star, a larger value of ΔR/R=0.15 is also chosen for comparison. Then we take the crustal entrainment into account, and evaluate the predictions for the fractional moment of inertia at various conditions. The results show that there is commonly no such glitch crisis, as long as one considers only a small fraction of the core neutron superfluid will contribute to the charged component of the star. Only if the core-crust transition pressure is determined to be a low value, the crisis problem may appear for complete core-crust coupling. This is consistent with a recent study in a phenomenological model.
Received: 08 January 2015      Published: 30 July 2015
PACS:  97.60.Jd (Neutron stars)  
  26.60.Kp (Equations of state of neutron-star matter)  
  97.60.Gb (Pulsars)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
LI Ang
[1] Anderson P W and Itoh N 1975 Nature 256 25
[2] Andersson N, Glampedakis K, Ho W C G et al 2012 Phys. Rev. Lett. 109 241103
[3] Chamel N 2013 Phys. Rev. Lett. 110 011101
[4] Dodson R G, McCulloch P M and Lewis D R 2002 Astrophys. J. 564 L85
[5] Newton W G, Hooker J, Gearheart M et al 2014 Eur. Phys. J. A 50 1
[6] Link B 2014 Astrophys. J. 789 141
[7] Li A, Wang J B, Shao L J and Xu R X 2014 arXiv:1406.4994
[8] Taranto G, Baldo M and Burgio G F 2013 Phys. Rev. C 87 045803
[9] Demorest P B, Pennucci T, Ransom S M et al 2010 Nature 467 1081
[10] Antoniadis J, Freire P C C, Wex N et al 2013 Science 340 6131
[11] Zhang C M et al 2011 Astron. Astrophys. 527 A83
[12] Lattimer J M and Lim Y 2013 Astrophys. J. 771 51
[13] Zhang C M et al 2007 Mon. Not. R. Astron. Soc. 374 232
[14] Piekarewicz J, Fattoyev F J and Horowitz C J 2014 Phys. Rev. C 90 015803
[15] Li A, Zuo W, Mi A J and Burgio G 2007 Chin. Phys. B 16 1934
[16] Huang Y F and Geng J J 2014 Astrophys. J. 782 L20
Related articles from Frontiers Journals
[1] Wen-Bo Ding, Zi Yu, Yan Xu, Chun-Jian Liu, Tmurbagan Bao. Neutrino Emission and Cooling of Dark-Matter-Admixed Neutron Stars[J]. Chin. Phys. Lett., 2019, 36(4): 079701
[2] Shuang-Qiang Wang, Na Wang, De-Hua Wang, Lun-Hua Shang. An Explanation for the Undetection of Radio Pulsar in Supernova 1987A[J]. Chin. Phys. Lett., 2017, 34(12): 079701
[3] Yi-Yan Yang, Li Chen, Rong-Feng Linghu, Li-Yun Zhang, Ali TAANI. Constraints on Estimation of Radius of Double Pulsar PSR J0737-3039A and Its Neutron Star Nuclear Matter Composition[J]. Chin. Phys. Lett., 2017, 34(12): 079701
[4] Yan Xu, Xiu-Lin Huang, Cheng-Zhi Liu, Tmurbagan Bao, Guang-Zhou Liu. Effects of Tensor Couplings on Nucleonic Direct URCA Processes in Neutron Star Matter[J]. Chin. Phys. Lett., 2016, 33(09): 079701
[5] H. Panahi, R. Monadi, I. Eghdami. A Gaussian Model for Anisotropic Strange Quark Stars[J]. Chin. Phys. Lett., 2016, 33(07): 079701
[6] QI Bin, ZHANG Nai-Bo, WANG Shou-Yu, SUN Bao-Yuan. Hyperon Effects on the Spin Parameter of Rotating Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(11): 079701
[7] Marina-Aura Dariescu, Ciprian Dariescu, Denisa-Andreea Mihu. Tunneling of Relativistic Bosons Induced by Magnetic Fields in the Magnetar's Crust[J]. Chin. Phys. Lett., 2015, 32(10): 079701
[8] DING Wen-Bo, E Shan-Shan, YU Zi, ZHANG Qi, QI Zhan-Qiang. Effects of Gravitational Correction on Neutrino Emission from Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(5): 079701
[9] PAN Yuan-Yue, WANG Na, ZHANG Cheng-Min. The Relation between the Magnetic Field and Spin Period of a Millisecond Pulsar[J]. Chin. Phys. Lett., 2013, 30(10): 079701
[10] WANG Hong-Yan, LIU Guang-Zhou, WU Yao-Rui, XU Yan, ZHU Ming-Feng, BAO Tmurbagan, ZHAO En-Guang. Bulk Properties of Hybrid Stars with the Color-Flavor Locked Quark Matter Core[J]. Chin. Phys. Lett., 2013, 30(6): 079701
[11] YAN Yan, CAO Jing, LUO Xin-Lian, SUN Wei-Min, ZONG Hong-Shi. Quark Stars Investigated using an Improved Quasi-Particle Model[J]. Chin. Phys. Lett., 2012, 29(10): 079701
[12] DING Wen-Bo, LI Ying, MI Geng. Influences of Both Δ and Δ0 Particles on the Neutron Star Cooling[J]. Chin. Phys. Lett., 2012, 29(9): 079701
[13] CHEN Yan-Jun, YUAN Ye-Fei. Effects of the Recombination of Nucleons into α-Particles on the R-process in Proto-magnetar Wind[J]. Chin. Phys. Lett., 2012, 29(6): 079701
[14] XU Yan**,LIU Guang-Zhou,WANG Hong-Yan,DING Wen-Bo,ZHAO En-Guang. Influence of σ* and φ Mesons on Λ Hyperon 1S0 Superfluidity in Neutron Star Matter[J]. Chin. Phys. Lett., 2012, 29(5): 079701
[15] PI Chun-Mei, YANG Shu-Hua**, ZHENG Xiao-Ping . Extension of Radiative Viscosity to Superfluid Matter[J]. Chin. Phys. Lett., 2011, 28(10): 079701
Full text