Chin. Phys. Lett.  2015, Vol. 32 Issue (07): 074205    DOI: 10.1088/0256-307X/32/7/074205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Focusing Properties of Partially Coherent Controllable Dark-Hollow Beams through a Thin Lens
ZENG Xiang-Mei**
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121
Cite this article:   
ZENG Xiang-Mei 2015 Chin. Phys. Lett. 32 074205
Download: PDF(716KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Analytical propagation formulas are derived for partially coherent controllable dark-hollow beams (CDHBs) through a thin lens based on the generalized Huygens–Fresnel integral. The expressions of the position for maximum irradiance on-axis and the relative focal shift are evaluated by the analytical propagation formulas. Our numerical results show that both the relative focal shift and the effective beam width of focused partially coherent CDHBs are mainly determined by the initial transverse coherence width δg and the Fresnel number Nw, which are also affected by the changes of both the dark-size adjusting parameter p and the order N of CDHBs.
Received: 05 February 2015      Published: 30 July 2015
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.55.-f (Lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/7/074205       OR      https://cpl.iphy.ac.cn/Y2015/V32/I07/074205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZENG Xiang-Mei
[1] Yin J P, Gao W B and Zhu Y F 2003 Prog. Opt. 45 119
[2] Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y and Sasa H 1997 Phys. Rev. Lett. 78 4713
[3] Yin J P, Zhu Y F, Jhe W and Wang Z Z 1998 Phys. Rev. A 58 509
[4] Cai Y J, Lü X and Lin Q 2003 Opt. Lett. 28 1084
[5] Mei Z R and Zhao D M 2005 J. Opt. Soc. Am. A 22 1898
[6] Bagini V, Frezza F and Santarsier M 1996 J. Mod. Opt. 43 1155
[7] Mei Z R and Zhao D M 2006 Opt. Commun. 259 415
[8] Li X, Wang F and Cai Y J 2011 Opt. Laser Technol. 43 577
[9] Cai Y J and Ge D 2006 Phys. Lett. A 357 72
[10] Cai Y J and Wang F 2008 Phys. Lett. A 372 4654
[11] Yuan Y S and Cai Y J 2009 Opt. Express 17 17344
[12] Ito H, Sakaki K, Jhe W and Ohtsu M 1997 Phys. Rev. A 56 712
[13] Yin J P, Gao W B and Zhu Y F 2002 Chin. Phys. 11 1157
[14] Zhou G Q 2009 J. Opt. Soc. Am. B 26 2386
[15] Zhou G Q 2009 J. Opt. Soc. Am. A 26 1654
[16] Zhao C L, Wang L G and Lu X H 2008 Opt. Laser Technol. 40 58
[17] Zhao C L, Wang L G and Lu X H 2007 Phys. Lett. A 363 502
[18] Lü X and Cai Y J 2007 Phys. Lett. A 369 157
[19] Andrews L C, Phillips R L and Hopen C Y 2001 Laser Beam Scintillation with Applications (Bellingham: SPIE press)
[20] Li Y and Wolf E 1982 Opt. Commun. 42 151
[21] Li Y and Wolf E 1981 Opt. Commun. 39 211
[22] Zeng X M, Hui Z Q, Wang Y and Zhou H 2014 J. Optoelectron. Laser 25 801 (in Chinese)
[23] Borghi R, Santarsiero M and Viealvi S 1998 Opt. Commun. 154 243
[24] Wolf E 1998 Opt. Lett. 23 1803
[25] Alavinejad M, Taherabadi G, Hadilou N and Chafary B 2013 Opt. Commun. 288 1
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 074205
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 074205
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 074205
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 074205
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 074205
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 074205
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 074205
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 074205
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 074205
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 074205
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 074205
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 074205
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 074205
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 074205
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 074205
Viewed
Full text


Abstract