Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 094303    DOI: 10.1088/0256-307X/31/9/094303
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Design of the Coordinate Transformation Function for Cylindrical Acoustic Cloaks with a Quantity of Discrete Layers
CAI Li**, WEN Ji-Hong, YU Dian-Long, LU Zhi-Miao, WEN Xi-Sen
Vibration and Acoustics Research Group, Science and Technology on Integrated Logistics Support Laboratory, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073
Cite this article:   
CAI Li, WEN Ji-Hong, YU Dian-Long et al  2014 Chin. Phys. Lett. 31 094303
Download: PDF(732KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Acoustic cloak based on coordinate transformation is of great topical interest and has promise in potential applications such as sound transparency and insulation. The frequency response of acoustic cloaks with a quantity of discrete homogeneous layers is analyzed by the acoustic scattering theory. The effect of coordinate transformation function on the acoustic total scattering cross section is discussed to achieve low scattering with only a few layers of anisotropic metamaterials. Also, the physics of acoustic wave interaction with the interfaces between the discrete layers inside the cloak shell is discussed. These results provide a better way of designing a multilayered acoustic cloak with fewer layers.
Published: 22 August 2014
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.20.+g (General linear acoustics)  
  43.40.+s (Structural acoustics and vibration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/094303       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/094303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Li
WEN Ji-Hong
YU Dian-Long
LU Zhi-Miao
WEN Xi-Sen
[1] Pendry J B, Schuring D and Smith D R 2006 Science 312 1780
[2] Schuring D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[3] Rahm M, Schurig D, Roberts D A, Cummer S A, Smith D R and Pendry J B 2008 Photon. Nanostruct.: Fundam. Appl. 6 87
[4] Cummer S A and Schurig D 2007 New J. Phys. 9 45
[5] Chen H Y and Chan C T 2007 Appl. Phys. Lett. 91 183518
[6] Gao D B and Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese)
[7] Torrent D and S ánchez-Dehesal J 2008 New J. Phys. 10 063015
[8] Cheng Y, Yang F, Xu J Y and Liu X J 2008 Appl. Phys. Lett. 92 151913
[9] Chen H Y, Yang T, Luo X D and Ma H R 2008 Chin. Phys. Lett. 25 3696
[10] Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J B, Rahm M and Starr A 2008 Phys. Rev. Lett. 100 024301
[11] K I M Seungil 2012 Chin. Phys. Lett. 29 124301
[12] Torrent D and S ánchez-Dehesal J 2007 New J. Phys. 9 323
[13] Popa B and Cummer S A 2009 Phys. Rev. B 80 174303
[14] Zhang S, Xia C G and Fang N 2011 Phys. Rev. Lett. 106 024301
[15] Cheng Y and Liu X J 2008 Appl. Phys. Lett. 93 071903
[16] Zhang L Y, Yan M and Qiu M 2008 J. Opt. A: Pure Appl. Opt. 10 095001
[17] Xi S, Chen H S, Zhang B, Wu B I and Kong J A 2009 Phys. Rev. B 79 155122
Related articles from Frontiers Journals
[1] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 094303
[2] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 094303
[3] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 094303
[4] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 094303
[5] Jin-Fu Liang, Yu An, Wei-Zhong Chen. Computational Simulation of Sodium Doublet Line Intensities in Multibubble Sonoluminescence[J]. Chin. Phys. Lett., 2019, 36(10): 094303
[6] Di Wu, De-Yao Yin, Zhi-Yuan Xiao, Qing-Fan Shi. Design of an Acoustic Levitator for Three-Dimensional Manipulation of Numerous Particles[J]. Chin. Phys. Lett., 2019, 36(9): 094303
[7] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 094303
[8] Yuan-Yuan Zhang, Wei-Zhong Chen, Ling-Ling Zhang, Xun Wang, Zhan Chen. Uniform Acoustic Cavitation of Liquid in a Disk[J]. Chin. Phys. Lett., 2019, 36(3): 094303
[9] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 094303
[10] Ke-xue Sun, Shu-yi Zhang, Kiyotaka Wasa. High Ferroelectricities and High Curie Temperature of BiInO$_{3}$PbTiO$_{3}$ Thin Films Deposited by RF Magnetron Sputtering Method[J]. Chin. Phys. Lett., 2018, 35(12): 094303
[11] Han Chen, Ming-Xi Deng, Ning Hu, Ming-Liang Li, Guang-Jian Gao, Yan-Xun Xiang. Analysis of Second-Harmonic Generation of Low-Frequency Dilatational Lamb Waves in a Two-Layered Composite Plate[J]. Chin. Phys. Lett., 2018, 35(11): 094303
[12] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 094303
[13] Qi Wang, Wei-Zhong Chen, Xun Wang, Tai-Yang Zhao. Effects of Sodium Dodecyl Sulfate on a Single Cavitation Bubble[J]. Chin. Phys. Lett., 2018, 35(8): 094303
[14] Xun Wang, Wei-Zhong Chen, Qi Wang, Jin-Fu Liang. A Theoretical Model for the Asymmetric Transmission of Powerful Acoustic Wave in Double-Layer Liquids[J]. Chin. Phys. Lett., 2017, 34(8): 094303
[15] Tai-Yang Zhao, Wei-Zhong Chen, Sheng-De Liang, Xun Wang, Qi Wang. Temperature and Pressure inside Sonoluminescencing Bubbles Based on Asymmetric Overlapping Sodium Doublet[J]. Chin. Phys. Lett., 2017, 34(6): 094303
Viewed
Full text


Abstract