Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 049801    DOI: 10.1088/0256-307X/31/4/049801
Hadronic Scenarios for Gamma-Ray Emission from Three Supernova Remnants Interacting with Molecular Clouds
YU Huan1, FANG Jun1,2, ZHANG Li1**
1Department of Physics, Yunnan University, Kunming 650091
2Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650011
Cite this article:   
YU Huan, FANG Jun, ZHANG Li 2014 Chin. Phys. Lett. 31 049801
Download: PDF(546KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract GeV γ-rays detected with the large area telescope on board the Fermi Gamma-ray space telescope in the direction of HB21, MSH 17-39 and G337.0-0.1 have been recently reported. The three supernova remnants (SNRs) show interactions with molecular clouds, and they are effective gamma-ray emitters as the relativistic protons accelerated by the SNR shocks inelastically colliding with the dense gas in the clouds. The origin of the observed γ-rays for the three remnants is investigated in the scenario of the diffusive shock acceleration. In the model, a part of the SNR shock transmits into the nearby molecular clouds, and the shock velocity is greatly reduced. As a result, a shock with a relatively low Alfvén Mach number is generated, and the spectra of the accelerated protons and theγ-ray photons produced via proton-proton interaction can be obtained. The results show that the observed γ-ray spectra for the three SNRs interacting with the molecular clouds can be reproduced. It can be concluded that the hadronic origin of the γ-rays for the three SNRs is approved, and the ability of SNR shocks to accelerate protons is also supported.
Received: 28 November 2013      Published: 25 March 2014
PACS:  98.38.Mz (Supernova remnants)  
  98.58.Db (Molecular clouds, H2 clouds, dense clouds, and dark clouds)  
  95.85.Pw (γ-ray)  
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
YU Huan
[1] Vink J 2012 Astron. Astrophys. Rev. 20 49
[2] Ackermann M et al 2013 Science 339 807
[3] Li H and Chen Y 2010 Mon. Not. R. Astron. Soc. 409 L35
[4] Ohira Y, Murase K and Yamazaki R 2011 Mon. Not. R. Astron. Soc. 410 1577
[5] Aharonian F A and Atoyan A M 1996 Astron. Astrophys. 309 917
[6] Gabici S, Aharonian F A and Casanova S 2009 Mon. Not. R. Astron. Soc. 396 1629
[7] Uchiyama Y, Blandford R D, Funk S, Tajima H and Tanaka T 2010 Astrophys. J. 723 L122
[8] Fang J and Zhang L 2008 Chin. Phys. Lett. 25 4486
[9] Fang J and Zhang L 2013 New Astron. 18 35
[10] Fang J, Yu H, Zhu B T and Zhang L 2013 Mon. Not. R. Astron. Soc. 435 570
[11] Reichardt I, de O?a-Wilhelmi E, Rico J and Yang R 2012 Astron. Astrophys. 546 A21
[12] Pivato G et al 2013 arXiv:1311.0393
[13] Castro D, Slane P, Carlton A and Figueroa-Feliciano E 2013 Astrophys. J. 774 36
[14] Malkov M A and O'C Drury L 2001 Rep. Prog. Phys. 64 429
[15] Kang H and Ryu D 2010 Astrophys. J. 721 886
[16] O'C Drury L, Duffy P and Kirk J G 1996 Astron. Astrophys. 309 1002
[17] Malkov M A, Diamond P H and Sagdeev R Z 2012 Phys. Plasmas 19 082901
[18] Bykov A M, Malkov M A, Raymond J C, Krassilchtchikov A M and Vladimirov A E 2013 Space Sci. Rev. 178 599
[19] Skilling J 1975 Mon. Not. R. Astron. Soc. 172 557
[20] Kamae T, Karlsson N, Mizun O T, Abe T and Koi T 2006 Astrophys. J. 647 692
[21] Leahy D A and Aschenbach B 1996 Astron. Astrophys. 315 260
[22] Byun D Y, Koo B C, Tatematsu K and Sunada K 2006 Astrophys. J. 637 283
[23] Koo B C and Heiles C 1991 Astrophys. J. 382 204
[24] Shinn J H, Koo B C, Burton M G, Lee H G and Moon D S 2009 Astrophys. J. 693 1883
[25] Crutcher R M 1999 Astrophys. J. 520 706
[26] Draine B T and McKee C F 1993 Annu. Rev. Astron. Astrophys. 31 373
[27] Malkov M A, Diamond P H and Sagdeev R Z 2012 Phys. Plasmas 19 082901
[28] Sarma A P, Goss W M, Green A J and Frail D A 1997 Astrophys. J. 483 335
[29] Frail D A, Goss W M, Reynoso E M, Giacani E B, Green A J and Otrupcek R 1996 Astrophys. J. 464 L165
[30] Brogan C L and Goss W M 2003 Astrophys. J. 125 272
[31] Nolan P L et al 2012 The Astrophysical Journal Supplement 199 31
[32] Shaver P A et al 1985 Nature 313 113
[33] Lazendic J et al 2003 Astronomische Nachrichten, Supplementary 324 157
Related articles from Frontiers Journals
[1] Yi-Yan Yang, Li Chen, Rong-Feng Linghu, Li-Yun Zhang, Ali TAANI. Constraints on Estimation of Radius of Double Pulsar PSR J0737-3039A and Its Neutron Star Nuclear Matter Composition[J]. Chin. Phys. Lett., 2017, 34(12): 049801
[2] Zhen-Zhen Jing, De-Hua Wen. A New Solution in Understanding Massive White Dwarfs[J]. Chin. Phys. Lett., 2016, 33(05): 049801
[3] ZHANG Ji-Long, TAN You-Hen, LU Hong, WANG Hui. Search for the Multi-TeV Gamma Rays from the Shell-Like SNR G40.5-0.5 Using the Tibet Air Shower Array[J]. Chin. Phys. Lett., 2005, 22(6): 049801
[4] WANG Xiao-Feng, ZHANG Tian-Meng, ZHOU Xu, LI Zong-Wei. Optical Evidence for Circumstellar Interaction Around SN 1993J[J]. Chin. Phys. Lett., 2004, 21(7): 049801
[5] ZHANG Xi-Zhen, R. G. Strom, W. Reich. Unusual Polarization Properties of Supernova Remnant G4.8+6.2 at 1400 MHz[J]. Chin. Phys. Lett., 2003, 20(6): 049801
[6] YU Zhi-Yao. Thin Circular Disc Shells of Radio Sources Around Supernova Remnant G16.2-2.7[J]. Chin. Phys. Lett., 2002, 19(11): 049801
Full text