Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 046301    DOI: 10.1088/0256-307X/31/4/046301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Ab-Initio Study of Cobalt Impurity Effects on Phonon Spectra, Mechanical and Thermal Properties of Single Wall Carbon Nanotube (5,0)
H. Tashakori1, B. Khoshnevisan1**, F. Kanjouri2
1Faculty of Physics, University of Kashan, Kashan, Iran
2Faculty of Physics, Kharazmi University, Karaj, Iran
Cite this article:   
H. Tashakori, B. Khoshnevisan, F. Kanjouri 2014 Chin. Phys. Lett. 31 046301
Download: PDF(595KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use density functional perturbation theory based on the pseudo-potential to calculate the phonon spectrum, phonon density of states, specific heat capacity and mechanical properties of pristine and cobalt doped (5,0) single wall carbon nanotube (CNT). In the calculations, we consider one Co atom in the center of the unit cell of the tube and it is shown that the pristine (5,0) CNT is nonmagnetic while the Co-doped tube becomes magnetic. Young's modulus for both systems is about 1 TPa (after Co-doping it goes slightly higher) and the Poisson ratio for the pristine tube becomes quite a bit larger than the doped one. On the other hand, the calculated value of radial breath mode for the pristine CNT is in good agreement with the experimental reports while after Co-doping it is increased. In addition, heat capacity of the doped CNT is reduced, which leads to some important empirical applications.
Received: 29 October 2013      Published: 25 March 2014
PACS:  63.22.Rc (Phonons in graphene)  
  63.20.kg (Phonon-phonon interactions)  
  61.46.Fg (Nanotubes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/046301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/046301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
H. Tashakori
B. Khoshnevisan
F. Kanjouri
[1] Khoshnevisan B, Aghtar M and Yazdani Kachoei M 2011 Int. J. Hydrogen Energy 36 1053
[2] Yang B P, Yan H, Mao S, Russo R, Johnson J, Saykally R et al 2002 Adv. Func. Mater. 12 323
[3] Harrisp J F 2009 Carbon Nanotube Science (Cambridge: Cambridge University Press)
[4] Zolymi V 2005 PhD Thesis (Eotvos University Budapest)
[5] Stroscio M A and Dutta M 2003 Phonons in Nanostructures (Cambridge: Cambridge University Press)
[6] Avouris P and Collins P G 2000 Nanotubes for Electronics (California: American Scientific Publishers)
[7] Jeong H J, An K H, Lim S C, Park M S, Chang J S, Park S E, Eum S J, Yang C W, Park C Y and Lee Y H 2003 Chem. Phys. Lett. 380 263
[8] Thess A, Lee R, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E and Smalley R E 1996 Science 273 483
[9] Tans S J, Devoret M H, Dai H, Thess A, Smalley R E, Geerligs L J and Dekker C 1997 Nature 386 474
[10] Kong J, Soh H, Cassell A and Dai H 1998 Nature 395 878
[11] Shi Z J, Lian Y F, Zhou X H, Gu Z N, Zhang Y G, Iijima S, Zhou L X, Yue K T and Zhang S L 1999 Carbon 37 1449
[12] Mao Y L, Yan X H and Xiao Y 2005 Nanotechnology 16 3092
[13] Chen W 2010 Doped Nanomaterials and Nanodevices (California: American Scientific Publishers)
[14] Miao T T, Song M X, Ma W G and Zhang X 2011 Chin. Phys. B 20 056501
[15] Tashakori H, Khoshnevisan B and Kanjouri F 2014 Comput. Mater. Sci. 83 16
[16] Khoshnevisan B and Mohammadi M 2013 Appl. Phys. A 112 311
[17] Baroni S, Gironcoli S D and Corso A D 2001 Rev. Mod. Phys. 73 515
[18] Vanderbilt D 1990 Phys. Rev. B 41 7892
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Monkhorst H J and Pack J D 1977 Phys. Rev. B 16 1748
[21] Saito R, Takeya T, Kimura T, Dresselhaus G and Dresselhaus M S 1998 Phys. Rev. B 57 4145
[22] Reich S, Thomsen C and Maultzsch J 2003 Carbon Nanotubes: Basic Concepts and Physical Properties (Weinheim: Wiley-VCH)
[23] Ashcroft N W and Mermin N D 1976 Solid State Physics (Saunders: Harcourt College Publishers)
[24] Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30 244
[25] Lier G V, Alsenoy C V, Doren V V and Geerlings P 2000 Chem. Phys. Lett. 326 181
[26] Baroni S, Giannozzi P and Isaev E 2010 Rev. Mineral Geochem 71 39
Related articles from Frontiers Journals
[1] Zheng-Fu Cheng, Rui-Lun Zheng. Thermal Expansion and Deformation of Graphene[J]. Chin. Phys. Lett., 2016, 33(04): 046301
[2] LU Xing, ZHONG Wei-Rong. Low Thermal Conductivity of Paperclip-Shaped Graphene Superlattice Nanoribbons[J]. Chin. Phys. Lett., 2015, 32(09): 046301
[3] Taher Ghrib, Rawdha Brini, Amel Lafi Al-otaibi, Muneera Abdullah Al-messiere. Thermal and Structural Study of Mono- and Multi-Layered Thin Films Composed of CuAlS2 Chalcogenide[J]. Chin. Phys. Lett., 2013, 30(10): 046301
Viewed
Full text


Abstract