ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Simulation and Optimization of Miniature Ring-Endcap Ion Traps |
CAO Jian1,2,3, TONG Xin1,2, CUI Kai-Feng1,2,3, SHANG Jun-Juan1,2,3, SHU Hua-Lin1,2, HUANG Xue-Ren1,2** |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 3Graduate University of Chinese Academy of Sciences, Beijing 100080
|
|
Cite this article: |
CAO Jian, TONG Xin, CUI Kai-Feng et al 2014 Chin. Phys. Lett. 31 043701 |
|
|
Abstract With the decrease in dimension of ion traps employed in optical frequency standards and precision spectroscopy, the sensitivity of trapping behavior to trap geometry is more and more prominent. We present a guide for the design and construction of a miniature trap for a single ion confinement, and propose an optimized combination of rring/rendcap≈0.5 and z0≈r0 within the range of r0=0.7±0.2 mm. Compared with the trap used by Huang et al. [Phys. Rev. A 84 (2011) 053841], the design can lead to an increase in trap pseudo-potential of more than 20% and a reduction on potential anharmonicity of more than 90%. The improvements make the trap closer to an ideal hyperboloidal trap to confine a single ion tightly with the benefit of weaker micro-motion. Considering the imperfection of electrodes machining and traps alignment, we also demonstrate the importance of trap symmetry, especially on two endcap electrodes.
|
|
Received: 19 December 2013
Published: 25 March 2014
|
|
|
|
|
|
[1] Huang Y et al 2011 Phys. Rev. A 84 053841 [2] Dube P et al 2013 Phys. Rev. A 87 023806 [3] Huntemann N et al 2012 Phys. Rev. Lett. 108 090801 [4] Chou C W et al 2010 Phys. Rev. Lett. 104 070802 [5] Rosenband T et al 2008 Science 319 1808 [6] Slodiccaronka L, Hetet G, Gerber S, Hennrich M and Blatt R 2010 Phys. Rev. Lett. 105 153604 [7] Matsubara K, Hayasaka K, Li Y, Ito H, Nagano S, Kajita M and Hosokawa M 2008 Appl. Phys. Express 1 067011 [8] Wineland D J and Itano W M 1979 Phys. Rev. A 20 1521 [9] Knight R D 1983 Int. J. Mass Spectrom. Ion Phys. 51 127 [10] Brewer R G, DeVoe R G and Kallenbach R 1992 Phys. Rev. A 46 R6781 [11] Schrama C A, Peik E, Smith W W and Walther H 1993 Opt. Commun. 101 32 [12] Champenois C, Knoop M, Herbane M, Houssin M, Kaing T, Vedel M and Vedel F 2001 Eur. Phys. J. D 15 105 [13] Paul W 1990 Rev. Mod. Phys. 62 531 [14] House M G 2008 Phys. Rev. A 78 033402 [15] Ji W B, Wan J Y, Chen H D and Liu L 2011 Chin. Phys. Lett. 28 073701 [16] Liu W, Chen S M, Chen P X and Wu W 2013 Chin. Phys. Lett. 30 123702 [17] Chun S O and Schuessler H A 1980 Int. J. Mass Spectrom. Ion Phys. 35 305 [18] March R E and Todd J F J 2005 Quadrupole Ion Trap Spectrometry (New Jersey: John Wiley & Sons) vol 2 p 55 [19] Guo B et al 2010 Chin. Phys. Lett. 27 013202 [20] March R E and Todd J F J 2005 Quadrupole Ion Trap Spectrometry (New Jersey: John Wiley & Sons) vol 2 p 76 [21] Wang Y, Franzen J and Wanczek K P 1993 Int. J. Mass Spectrom. Ion Phys. 124 125 [22] Eades D M, Johnson J V and Yost R A 1993 J. Am. Soc. Mass Spectrom. 4 917 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|