Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 043701    DOI: 10.1088/0256-307X/31/4/043701
ATOMIC AND MOLECULAR PHYSICS |
Simulation and Optimization of Miniature Ring-Endcap Ion Traps
CAO Jian1,2,3, TONG Xin1,2, CUI Kai-Feng1,2,3, SHANG Jun-Juan1,2,3, SHU Hua-Lin1,2, HUANG Xue-Ren1,2**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
3Graduate University of Chinese Academy of Sciences, Beijing 100080
Cite this article:   
CAO Jian, TONG Xin, CUI Kai-Feng et al  2014 Chin. Phys. Lett. 31 043701
Download: PDF(630KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the decrease in dimension of ion traps employed in optical frequency standards and precision spectroscopy, the sensitivity of trapping behavior to trap geometry is more and more prominent. We present a guide for the design and construction of a miniature trap for a single ion confinement, and propose an optimized combination of rring/rendcap0.5 and z0≈r0 within the range of r0=0.7±0.2 mm. Compared with the trap used by Huang et al. [Phys. Rev. A 84 (2011) 053841], the design can lead to an increase in trap pseudo-potential of more than 20% and a reduction on potential anharmonicity of more than 90%. The improvements make the trap closer to an ideal hyperboloidal trap to confine a single ion tightly with the benefit of weaker micro-motion. Considering the imperfection of electrodes machining and traps alignment, we also demonstrate the importance of trap symmetry, especially on two endcap electrodes.
Received: 19 December 2013      Published: 25 March 2014
PACS:  37.10.Ty (Ion trapping)  
  06.20.fb (Standards and calibration)  
  42.62.Fi (Laser spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/043701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/043701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Jian
TONG Xin
CUI Kai-Feng
SHANG Jun-Juan
SHU Hua-Lin
HUANG Xue-Ren
[1] Huang Y et al 2011 Phys. Rev. A 84 053841
[2] Dube P et al 2013 Phys. Rev. A 87 023806
[3] Huntemann N et al 2012 Phys. Rev. Lett. 108 090801
[4] Chou C W et al 2010 Phys. Rev. Lett. 104 070802
[5] Rosenband T et al 2008 Science 319 1808
[6] Slodiccaronka L, Hetet G, Gerber S, Hennrich M and Blatt R 2010 Phys. Rev. Lett. 105 153604
[7] Matsubara K, Hayasaka K, Li Y, Ito H, Nagano S, Kajita M and Hosokawa M 2008 Appl. Phys. Express 1 067011
[8] Wineland D J and Itano W M 1979 Phys. Rev. A 20 1521
[9] Knight R D 1983 Int. J. Mass Spectrom. Ion Phys. 51 127
[10] Brewer R G, DeVoe R G and Kallenbach R 1992 Phys. Rev. A 46 R6781
[11] Schrama C A, Peik E, Smith W W and Walther H 1993 Opt. Commun. 101 32
[12] Champenois C, Knoop M, Herbane M, Houssin M, Kaing T, Vedel M and Vedel F 2001 Eur. Phys. J. D 15 105
[13] Paul W 1990 Rev. Mod. Phys. 62 531
[14] House M G 2008 Phys. Rev. A 78 033402
[15] Ji W B, Wan J Y, Chen H D and Liu L 2011 Chin. Phys. Lett. 28 073701
[16] Liu W, Chen S M, Chen P X and Wu W 2013 Chin. Phys. Lett. 30 123702
[17] Chun S O and Schuessler H A 1980 Int. J. Mass Spectrom. Ion Phys. 35 305
[18] March R E and Todd J F J 2005 Quadrupole Ion Trap Spectrometry (New Jersey: John Wiley & Sons) vol 2 p 55
[19] Guo B et al 2010 Chin. Phys. Lett. 27 013202
[20] March R E and Todd J F J 2005 Quadrupole Ion Trap Spectrometry (New Jersey: John Wiley & Sons) vol 2 p 76
[21] Wang Y, Franzen J and Wanczek K P 1993 Int. J. Mass Spectrom. Ion Phys. 124 125
[22] Eades D M, Johnson J V and Yost R A 1993 J. Am. Soc. Mass Spectrom. 4 917
Related articles from Frontiers Journals
[1] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 043701
[2] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 043701
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 043701
[4] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 043701
[5] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 043701
[6] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 043701
[7] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 043701
[8] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 043701
[9] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 043701
[10] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 043701
[11] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 043701
[12] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 043701
[13] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 043701
[14] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 043701
[15] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. A Configurable Surface-Electrode Ion Trap Design for Quantum Information Processing[J]. Chin. Phys. Lett., 2013, 30(12): 043701
Viewed
Full text


Abstract