Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 034207    DOI: 10.1088/0256-307X/31/3/034207
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Evaluation of Slow Light Periodic Signals Considering the Distortion in EDF
WANG Fu, WU Chong-Qing**, WANG Zhi, LIU Guo-Dong, LIU Lan-Lan, SUN Zhen-Chao
Institute of Optical Information and Key Lab of Luminescence and Optical Information Technology, Beijing Jiaotong University, Beijing 100044
Cite this article:   
WANG Fu, WU Chong-Qing, WANG Zhi et al  2014 Chin. Phys. Lett. 31 034207
Download: PDF(658KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the fundamental harmonic phase delay, a new definition of fundamental harmonic fractional delay (FHFD) is proposed to evaluate slow light with the consideration of signal distortion, to eliminate the dependence on the choice of the reference point. By solving the rate equation of erbium-doped fiber (EDF), it is shown that the slow light always accompanies the signal distortion when the periodic signal propagates in EDF, and FHFD depends on the signal distortion, as well as the average input power, the modulation depth and the length of EDF. The results of simulations and experiments indicate that the definition of FHFD is reasonable and effective to evaluate the slow light of periodic signals.
Received: 09 December 2013      Published: 28 February 2014
PACS:  42.65.-k (Nonlinear optics)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
  78.20.Bh (Theory, models, and numerical simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/034207       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/034207
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Fu
WU Chong-Qing
WANG Zhi
LIU Guo-Dong
LIU Lan-Lan
SUN Zhen-Chao
[1] Zhang C and Huang Y 2009 Chin. Phys. Lett. 26 074216
[2] Lu S Y and Zhang J L 2010 Chin. Phys. Lett. 27 034205
[3] Zhao Y and Zhao H W 2009 Opt. Laser Technol. 41 517
[4] Pant R, Byrnes A and Christopher G 2012 Opt. Lett. 37 969
[5] Sharping J E, Okawachi Y and Gaeta A L 2005 Opt. Express 13 6092
[6] Chen W, Meng Z and Zhou H J 2013 Chin. Phys. Lett. 30 074209
[7] Zhang J P, Hernandez G and Zhu Y F 2008 Opt. Lett. 33 46
[8] Schweinsberg A and Lepeshkin N N 2006 Europhys. Lett. 73 218
[9] Bigelow M S and Lepeshkin N N 2006 J. Phys.: Condens. Matter 18 3117
[10] Shin H and Schweinsberg A 2007 Opt. Lett. 32 906
[11] Bigelow M S and Lepeshkin N N 2003 Phys. Rev. Lett. 90 113903
[12] Melle S and Calderón O G 2007 Opt. Commun. 279 53
[13] Calderon and Melle S 2008 Phys. Rev. A 78 053812
[14] Arrieta-Yá?ez F, Calderón O G and Melle S 2010 J. Opt. 12 104002
[15] Zhang Y D, Qiu W and Ye J B 2008 Opt. Commun. 281 2633
[16] Qiu W, Zhang Y D, Ye J B and Wang N 2008 Appl. Opt. 47 1781
[17] Novak S and Moesle A 2002 J. Lightwave Technol. 20 975
[18] Zhang Y D and Fan B H 2004 Chin. Phys. Lett. 21 87
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 034207
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 034207
[3] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 034207
[4] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 034207
[5] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 034207
[6] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 034207
[7] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 034207
[8] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 034207
[9] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 034207
[10] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 034207
[11] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 034207
[12] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 034207
[13] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 034207
[14] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 034207
[15] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 034207
Viewed
Full text


Abstract