Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 129701    DOI: 10.1088/0256-307X/31/12/129701
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Energy Extraction from a Black Hole and Its Influence on X-Ray Spectra
HUANG Chang-Yin1**, GONG Xiao-Long1, WANG Ding-Xiong2
1School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023
2School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
HUANG Chang-Yin, GONG Xiao-Long, WANG Ding-Xiong 2014 Chin. Phys. Lett. 31 129701
Download: PDF(561KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Taking into account the energy and angular momentum transferred from a rotating black hole (BH) to the inner accretion disk by the magnetic connection (MC) process, we simulate the x-ray spectra from the disk-corona system with two different magnetic configurations using the Monte Carlo method. The results show that the MC process reduces the ratio of the power dissipated in the corona to the total and softens the spectrum. The influence of the MC process is stronger with a higher BH spin, a larger accretion rate, and a larger and more centralized magnetic flux threading the disk. The comparison of the model spectra with the observational data suggests that large-scale magnetic fields accumulating in the inner disk could be a candidate explanation for the hard-to-soft state evolutions in BH binaries.
Published: 12 January 2015
PACS:  97.10.Gz (Accretion and accretion disks)  
  97.60.Lf (Black holes)  
  95.85.Nv (X-ray)  
  97.80.Jp (X-ray binaries)  
TRENDMD:   
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/129701       OR      http://cpl.iphy.ac.cn/Y2014/V31/I12/129701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Chang-Yin
GONG Xiao-Long
WANG Ding-Xiong
[1] Blandford R D and Znajek R L 1977 Mon. Not. R. Astron. Soc. 179 433
[2] Penrose R 1969 Riv. Nuovo Cimento 1 252
[3] Belgelman M C, Blandford R D and Ree M J 1984 Rev. Mod. Phys. 56 256
[4] Mirabel I F and Rodriguez L F 1998 Nature 392 673
[5] Lee H K, Wijers R A M J and Brown G E 2000 Phys. Rep. 325 83
[6] Wang D X, Lei W H, Xiao K and Ma R 2002 Astrophys. J. 580 358
[7] Blandford R D 1999 An EC Summer School, Astronomical Society of the Pacific Conference Series, Astrophysical Discs 160 265
[8] van Putten M H P M 1999 Science 284 115
[9] Li L X 2000 Astrophys. J. 533 L115
[10] Wang D X, Xiao K and Lei W H 2002 Mon. Not. R. Astron. Soc. 335 655
[11] Miller J M, Fabian A C, Wijnands R, Reynolds C S, Ehle M et al 2002 Astrophys. J. 570 L69
[12] Miller J M 2007 Annu. Rev. Astron. Astrophys. 45 441
[13] Remillard R A and McClintock J E 2006 Annu. Rev. Astron. Astrophys. 44 49
[14] Wilms J, Reynolds C S, Begelman M C et al 2001 Mon. Not. R. Astron. Soc. 328 L27
[15] Li L X 2002 Astron. Astrophys. 392 469
[16] Wang D X, Lei W H and Xiao K 2003 Mon. Not. R. Astron. Soc. 342 851
[17] Wang D X, Ma R, Lei W H and Yao G Z 2003 Mon. Not. R. Astron. Soc. 344 473
[18] Wang D X, Ye Y C, Yao G Z and Ma R 2005 Mon. Not. R. Astron. Soc. 359 36
[19] Huang C Y, Gan Z M, Wang J Z and Wang D X 2010 Mon. Not. R. Astron. Soc. 403 1978
[20] Huang C Y, Wang D X, Wang J Z and Wang Z Y 2013 Res. Astron. Astrophys. 13 705
[21] Spruit H C and Uzdensky D A 2005 Astrophys. J. 629 960
[22] Dexter J, McKinney J C, Markoff S and Tchekhovskoy A 2014 Mon. Not. R. Astron. Soc. 440 2185
[23] Wang J Z, Wang D X and Huang C Y 2013 Res. Astron. Astrophys. 13 1163
[24] Miller J M, Homan J and Miniutti G 2006 Astrophys. J. 652 L113
[25] Miller J M, Homan J, Steeghs D et al 2006 Astrophys. J. 653 525
[26] Reis R C, Fabian A C and Miller J M 2010 Mon. Not. R. Astron. Soc. 402 836
[27] Wang D X, Ma R, Lei W H and Yao G Z 2003 Astrophys. J. 595 109
[28] Gan Z M, Wang D X and Lei W H 2009 Mon. Not. R. Astron. Soc. 394 2310
[29] Novikov I D and Thorne K S 1973 in Black Holes ed DeWitt C and DeWitt B (New York: Gordon & Breach) p 343
[30] Page D N and Thorne K S 1974 Astrophys. J. 191 499
[31] Li L X 2002 Astrophys. J. 567 463
[32] Bardeen J M, Press W H and Teukolsky S A 1972 Astrophys. J. 178 347
[33] Moderski R, Sikora M and Lasota J P 1997 Proc. Int. Conf., Relativistic Jets in AGNs p 110
[34] Di Matteo T 1998 Mon. Not. R. Astron. Soc. 299 L15
[35] Liu B F, Mineshige S and Shibata K 2002 Astrophys. J. 572 L173
[36] Shakura N I and Sunyaev R A 1973 Astron. Astrophys. 24 337
[37] Wang J M, Watarai K Y and Mineshige S 2004 Astrophys. J. 607 L107
[38] Gierliński K, Zdziarski A A, Done C, Johnson W N et al 1997 Mon. Not. R. Astron. Soc. 288 958
[39] Torii S, Yamada S, Makishima K et al 2011 Publ. Astron. Soc. Jpn. 63 S771
[40] Livio M, Ogilvie G I and Pringle J E 1999 Astrophys. J. 512 100
[41] ?zel F, Psaltis D, Narayan R and McClintock J E 2010 Astrophys. J. 725 1918
[42] King A R, Pringle J E and Livio M 2007 Mon. Not. R. Astron. Soc. 376 1740
[43] Liu B F and Taam R E 2013 Astrophys. J. Suppl. Ser. 207 17
[44] Shaposhnikov N, Swank J, Shrader C R, Rupen M and Beckmann V 2007 Astrophys. J. 655 434
[45] Shafee R, McClintock J E, Narayan R, Davis S W, Li L X and Remillard R A 2006 Astrophys. J. 636 L113
Related articles from Frontiers Journals
[1] Jiang-Tao Wang, Han-Feng Song. The Pulsation Induced by Mass Transfer in Critically Rotating Stars[J]. Chin. Phys. Lett., 2016, 33(09): 129701
[2] PING Chong, MA Ren-Yi, LU Ju-Fu. The Dynamical Effects of a Large-Scale Ordered Magnetic Field on Slim Disks[J]. Chin. Phys. Lett., 2013, 30(5): 129701
[3] JIAO Cheng-Liang, LU Ju-Fu. Slim Discs with Varying Accretion Rates[J]. Chin. Phys. Lett., 2009, 26(4): 129701
[4] ZHOU Ai-Ping, LI Xiao-Qing. Magnetic Instability in Accretion Discs with Anomalous Viscosity[J]. Chin. Phys. Lett., 2004, 21(3): 129701
[5] WU Xue-bing. Generalized Thermal Instability Criterion of Black Hole Accretion Disks[J]. Chin. Phys. Lett., 1998, 15(7): 129701
[6] ZHOU Hongnan, HUANG Keliang. Structure and Evolution of an Isothermal Thin Accretion Disk Around a Black Hole[J]. Chin. Phys. Lett., 1995, 12(8): 129701
Viewed
Full text


Abstract