Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 127501    DOI: 10.1088/0256-307X/31/12/127501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Crystalline Quality on Magnetic Properties of Mn-Doped ZnO Nanowires
CHANG Yong-Qin1**, SUN Qing-Ling1, LONG Yi1, WANG Ming-Wen2
1School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
CHANG Yong-Qin, SUN Qing-Ling, LONG Yi et al  2014 Chin. Phys. Lett. 31 127501
Download: PDF(1219KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mn-doped ZnO nanowires are synthesized by a vapor phase deposition method in air and in a vacuum, respectively. X-ray diffraction results show that all the diffraction peaks correspond to the hexagonal wurtzite structure. X-ray absorption fine structure spectra suggest that a single Mn2+-containing phase exists and Mn2+ions occupy Zn2+ ions in the ZnO lattice. Photoluminescence spectra show that many defects exist in the doped nanowires as the samples grown in air, and the crystalline quality decreases with the increase of Mn. These samples exhibit obvious room-temperature ferromagnetic characteristics, and the magnetization increases with the increase of Mn. The sample with higher crystal quality grown in a vacuum exhibits the paramagnetic behavior at room temperature. As the as-grown samples are annealed, the crystalline quality improves, while the magnetization of the samples grown under the air condition translates from room-temperature ferromagnetism to the paramagnetism behavior. The above results indicate that the magnetic property of the Mn-doped ZnO nanowires can be controlled by the crystalline quality.
Published: 12 January 2015
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  61.46.Hk (Nanocrystals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/127501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/127501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHANG Yong-Qin
SUN Qing-Ling
LONG Yi
WANG Ming-Wen
[1] Wang X L, Shao Q, Leung C W, Lortz R and Ruotolo A 2014 Appl. Phys. Lett. 104 062409
[2] Yi J B, Pan H, Lin J Y, Feng Y P, Thongmee S, Liu T, Gong H and Wang L 2008 Adv. Mater. 20 1170
[3] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[4] Wang J B, Huang G I, Zhong X L, Sun L Z, Zhou Y C and Liu E H 2006 Appl. Phys. Lett. 88 252502
[5] Jayakumar O D, Salunke H G, Kadam R M, Mohapatra M, Yaswant G and Kulshreshtha S K 2006 Nanotechnology 17 1278
[6] Cong C J, Liao L, Li J C, Fan L X and Zhang K L 2005 Nanotechnology 16 981
[7] Ravichandran K, Karthika K, Sakthivel B, Jabena B N, Snega S, Swaminathan K and Senthamilselvi V 2014 J. Magn. Magn. Mater. 358 50
[8] Vinod R, Bushiri M J, Sajan P, Achary S R and Munoz-Sanjose V 2014 Phys. Status Solidi A 211 1155
[9] Y ?lmaz S, Garry S, McGlynn E and Bacaks?z E 2014 Ceram. Int. 40 7753
[10] Gao Q Q, Yu Q X, Yuan K, Fu X N, Chen B, Zhu C X and Zhu H 2013 Appl. Surf. Sci. 264 7
[11] Chang L T, Wang C Y, Tang J S, Ni T X, Jiang W J, Chu C P, Arafin S, He L, Chen L J and Wang K L 2014 Nano Lett. 14 1823
[12] Xu X Y, Ma X Y, Jin L and Yang D R 2012 Chin. Phys. Lett. 29 037301
[13] Mukherjee D, Mukherjee P, Srikanth H and Witanachchi S 2012 J. Appl. Phys. 111 07C318
[14] Schoofs F, Fix T, Hakimi A M H R, Dhesi S S, Laan G V D, Cavill S A, Langridge S, Driscoll J L M and Blamire M G 2010 J. Appl. Phys. 108 053911
[15] Saif U A, Hasanain S K, Hassnain J G, Anjum D H and Qurashi U S 2014 J. Appl. Phys. 116 083510
[16] Chang Y Q, Yu D P, Li G H, Fang Z L, Zhang Y, Chen Y F and Yang F H 2004 Chin. Phys. Lett. 21 2301
[17] Chen X C, Kang C Y, Yang Y J, Xu P S and Pan G Q 2011 Chin. J. Lumin. 32 1247
Related articles from Frontiers Journals
[1] Xiao-Ping Ma, Hongguo Yang, Changfeng Li, Cheng Song, and Hong-Guang Piao. Nanocavity-Mediated Fast Magnetic Vortex Core In-Situ Switching by Local Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(12): 127501
[2] Qingwei Fu, Kaiyuan Zhou, Lina Chen, Yongbing Xu, Tiejun Zhou, Dunhui Wang, Kequn Chi, Hao Meng, Bo Liu, Ronghua Liu, and Youwei Du. Field- and Current-Driven Magnetization Reversal and Dynamic Properties of CoFeB-MgO-Based Perpendicular Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2020, 37(11): 127501
[3] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 127501
[4] Juan Ren, Song-Bin Zhang, Ping-Ping Liu. Magnetic and Electronic Properties of $\beta$-Graphyne Doped with Rare-Earth Atoms[J]. Chin. Phys. Lett., 2019, 36(7): 127501
[5] Baoyue Li, Yifeng Cao, Lin Xu, Guang Yang, Zhi Ma, Miao Ye, Tianxing Ma. Anisotropy Engineering Edge Magnetism in Zigzag Honeycomb Nanoribbons[J]. Chin. Phys. Lett., 2019, 36(6): 127501
[6] Hui-Fang Yang, Ling-Zhi Tang, Qiang Sun, Lei Sun, Zhen-Hua Li, Shu-Xia Ren. Ferromagnetism in High-Surface-Area ZnO Nanosheets Prepared by a Template-Assisted Hydrothermal Method[J]. Chin. Phys. Lett., 2018, 35(6): 127501
[7] Tian-Le Wang, Zhi-Gang Li, Li Zhang, Wei-Ping Chen, Shang-Shen Feng, Wen-Wu Zhong. Coercivity Ageing Effect on FePt Nanoparticles in Mesoporous Silica via Stepwise Synthesis Strategy[J]. Chin. Phys. Lett., 2018, 35(6): 127501
[8] Yu-Ting Liu, Li-Peng Hou, Shuang-Yang Zou, Li Zhang, Bian-Bian Liang, Yong-Chang Guo, Arfan Bukhtiar, Muhammad Umair Farooq, Bing-Suo Zou. EMP Formation in the Co(II) Doped ZnTe Nanowires[J]. Chin. Phys. Lett., 2018, 35(3): 127501
[9] Abdelkader Khouidmi, Hadj Baltache, Ali Zaoui. Magnetic and Electronic Properties of Double Perovskite Ba$_{2}$SmNbO$_{6 }$ without Octahedral Tilting by First Principle Calculations[J]. Chin. Phys. Lett., 2017, 34(7): 127501
[10] Ya-Qing Feng, Kui-Juan Jin, Chen Ge, Xu He, Lin Gu, Zhen-Zhong Yang, Hai-Zhong Guo, Qian Wan, Meng He, Hui-Bin Lu, Guo-Zhen Yang. Effect of Terraces at the Interface on the Structural and Physical Properties of La$_{0.8}$Sr$_{0.2}$MnO$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(07): 127501
[11] Jian-Fen Hu, Lin Feng, Wen-Xing Zhang, Yong Li, Ya-Xin Lu. Detection of DNA Bases Using Fe Atoms and Graphene[J]. Chin. Phys. Lett., 2016, 33(01): 127501
[12] GUO Min-Chen, LIU Wei-Fang, WU Ping, ZHANG Hong, XU Xun-Ling, WANG Shou-Yu, RAO Guang-Hui. Enhanced Magnetic and Dielectric Properties in Low-Content Tb-Doped BiFeO3 Nanoparticles[J]. Chin. Phys. Lett., 2015, 32(06): 127501
[13] SHI Li-Kun, LOU Wen-Kai. Surface States of Bi2Se3 Nanowires in the Presence of Perpendicular Magnetic Fields[J]. Chin. Phys. Lett., 2014, 31(06): 127501
[14] LEI Shu-Lai, LI Bin, HUANG Jing, LI Qun-Xiang, YANG Jin-Long. A First-Principles Investigation of the Carrier Doping Effect on the Magnetic Properties of Defective Graphene[J]. Chin. Phys. Lett., 2013, 30(7): 127501
[15] Murtaza Saleem, Saadat A. Siddiqi, Shahid M. Ramay, Shahid Atiq, Shahzad Naseem. Origin of Ferromagnetism in Al and Ni Co-doped ZnO Based DMS Materials[J]. Chin. Phys. Lett., 2012, 29(10): 127501
Viewed
Full text


Abstract