Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 113101    DOI: 10.1088/0256-307X/30/11/113101
ATOMIC AND MOLECULAR PHYSICS |
Theoretical Study of the H+ClO Reaction
LI Ya-Min1, CHE Ru-Xin1, LI Ying1, DONG Bin2**
1Department of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028
2College of Environmental Science and Engineering, Tongji University, Shanghai 200092
Cite this article:   
LI Ya-Min, CHE Ru-Xin, LI Ying et al  2013 Chin. Phys. Lett. 30 113101
Download: PDF(593KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a theoretical study of the H+OCl system on an accurate ab initio potential energy surface (PES) investigated by Peterson et al. [J. Chem. Phys. 113 (2000) 6186]. Both the exact time-dependent quantum wave packet (TDWP) and quasi-classical trajectory (QCT) methods are employed. The results of reaction probabilities for total angular momentum J=0 and the integral cross section calculated by the TDWP are in good agreement with the QCT ones. Additionally, the nearly forward-backward symmetric product scattering angular distributions and the weak products' rotational alignment effect obtained by the QCT calculations are attributed to a long-lived intermediate reaction process.
Received: 14 May 2013      Published: 30 November 2013
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  82.20.-w (Chemical kinetics and dynamics)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/113101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/113101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ya-Min
CHE Ru-Xin
LI Ying
DONG Bin
[1] Zhang D H and Zhang J Z H 1994 J. Chem. Phys. 101 1146
[2] Zhang D H and Zhang J Z H 1994 J. Chem. Phys. 101 3671
[3] Zhang J Z H 1999 Theory and Application of Quantum Molecular Dynamics (Singapore: World Scientific Publishing)
[4] Jackson B 1995 Annu. Rev. Phys. Chem. 46 251
[5] Schatz G C 1988 Annu. Rev. Phys. Chem. 39 317
[6] Peterson K, Skokov S and Bowman J 1999 J. Chem. Phys. 111 7446
[7] Skokov S, Bowman J and Peterson K 1998 J. Chem. Phys. 109 2662
[8] Bittererova M, Bowman J and Peterson K 2000 J. Chem. Phys. 113 6186
[9] Martinez T, Hernandez M L, Alvarino J M, Lagana A, Aoiz F J, Menendez M and Verdasco E 2000 Phys. Chem. Chem. Phys. 2 589
[10] Christoffel K M and Bowman J 2002 J. Chem. Phys. 116 4842
[11] Wei Q and Wu V W K 2009 Mol. Phys. 107 1453
[12] Yang H, Han K L, Nanbu S, Nakamura H, Balint-Kurti G G, Zhang H, Smith S C and Hanke M 2008 J. Phys. Chem. A 112 7947
[13] Yang H, Han K L, Nanbu S, Nakamura H, Balint-Kurti G G, Zhang H, Smith S C and Hanke M 2008 J. Chem. Phys. 128 014308
[14] Piemarini V, Lagana A and Balint-Kurti G G 2001 Phys. Chem. Chem. Phys. 3 4515
[15] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[16] Zhang X and Han K L 2006 Int. J. Quantum Chem. 106 1815
[17] Xiao J, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
[18] Bai M M, Ge M H, Yang H et al 2012 Chin. Phys. B 21 123401
[19] Xu Z H, Zong F J, Han B R et al 2012 Chin. Phys. B 21 093103
Related articles from Frontiers Journals
[1] Fuxin Wang, Chao Zhang, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Baoyuan Man, and Weifeng Li. Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing[J]. Chin. Phys. Lett., 2020, 37(11): 113101
[2] Nan Zhang, Ming-Ru Li, Hui-Ting Xu, and Feng-Shou Zhang. Polymorphism and Flexibility of DNA in Alcohols[J]. Chin. Phys. Lett., 2020, 37(8): 113101
[3] Lin Zhuang, Qijun Ye, Ding Pan, Xin-Zheng Li. Discriminating High-Pressure Water Phases Using Rare-Event Determined Ionic Dynamical Properties[J]. Chin. Phys. Lett., 2020, 37(4): 113101
[4] Oğuz Gürbulak, Emine Cebe. Molecular Dynamics Simulation of 4-N-Hexyl-4'-Cyanobiphenyl Adsorbed at the Air-Water Interface[J]. Chin. Phys. Lett., 2018, 35(4): 113101
[5] Zi-Qian Huang, Rong-Yao Yang, Wei-Zhou Jiang, Qi-Lin Zhang. Heating of Nanosized Liquid Water in High-Intensity Terahertz Pulses[J]. Chin. Phys. Lett., 2016, 33(01): 113101
[6] MA Wang-Guo, ZHANG Meng, NIE Xue-Chuan, WANG Chun-Lei, FANG Hai-Ping, HE Meng-Dong, ZHANG Li-Juan. Controllable Nucleation of Nanobubbles at a Modified Graphene Surface[J]. Chin. Phys. Lett., 2015, 32(4): 113101
[7] ZHANG Cai-Ping, MIAO Xiang-Yang. Role of the Permanent Dipole Moment in Coulomb Explosion[J]. Chin. Phys. Lett., 2013, 30(10): 113101
[8] WU Tian-Yu, PENG Meng-Meng, LUO Xiao-Feng, LAI Wen-Sheng. Influence of Temperature and Stress on Near-Surface Cascades in Alpha-Zirconium Revealed by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2013, 30(9): 113101
[9] ZHANG Yue-Xia, LIU Qiang, SHI Ting-Yun. The Hydrogen Molecular Ion in Strong Fields Using the B-Spline Method[J]. Chin. Phys. Lett., 2013, 30(4): 113101
[10] XI Wen-Hui, LI Wen-Fei, and WANG Wei. Modulation of Amyloid-β Conformation by Charge State of N-Terminal Disordered Region[J]. Chin. Phys. Lett., 2012, 29(8): 113101
[11] ZHAO Li, SUN Ping, LIU Chao-Zhuo* . Quasi-Classical Trajectory Calculations of Reaction Stereodynamics of H+OH( v = 0, j = 0)H2+O(3 P )[J]. Chin. Phys. Lett., 2011, 28(8): 113101
[12] WANG Tao, YUE Xian-Fang . QCT Calculations of Reactions of F+LiHLiF+H and F+LiDLiF+D: Product Polarization and Isotope Effects[J]. Chin. Phys. Lett., 2011, 28(2): 113101
[13] XIAO Jing, YANG Chuan-Lu**, WANG Mei-Shan, MA Xiao-Guang . Collision Energies Effect on Stereodynamics for Ne+H2+→NeH++H Reaction[J]. Chin. Phys. Lett., 2011, 28(1): 113101
[14] ZENG Li, GUO Hong-Kai, ZUO Guang-Hong, WAN Rong-Zheng, FANGHai-Ping,. Water Transport through Multinanopores Membranes[J]. Chin. Phys. Lett., 2009, 26(3): 113101
[15] ZHANG Yue-Xia, KANG Shuai, SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(11): 113101
Viewed
Full text


Abstract