Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 013201    DOI: 10.1088/0256-307X/30/1/013201
ATOMIC AND MOLECULAR PHYSICS |
Visible Light Emission in Highly Charged Kr17+ Ions Colliding with an Al Surface
YANG Zhi-Hu1**, XU Qiu-Mei1, GUO Yi-Pan1,2, WU Ye-Hong1,2, SONG Zhang-Yong1
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
2Graduate University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
YANG Zhi-Hu, XU Qiu-Mei, GUO Yi-Pan et al  2013 Chin. Phys. Lett. 30 013201
Download: PDF(454KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report light emission during the bombardment of Kr ions on an Al surface in the wavelength range 300–700 nm. The three spectral lines of the sputtered Al atoms belong to transitions of Al I – at 309.26, Al I –4s 2S1/2 at 394.72 and Al I 3p 2Po3/2–4s 2S1/2 at 396.50 nm. During the neutralization process, the seven spectral lines of Kr I and Kr II from the incident ion of Kr17+ attribute to transitions of Kr I 5p 2[3/2]2–7d 2[1/2]o1 at 616.33, Kr II 5s 2D5/2–5p 2Do3/2 at 410.86, Kr II 5p 4Po5/2–6s 4P5/2 at 430.58, Kr II 4d 2D3/2–4f 2[3]o5/2 at 434.42, Kr II 4d 4D1/2–5p 2So1/2 at 485.80, Kr II 4p 4S3/2–6s 4Po3/2 at 618.57 and Kr II 5p 4Po3/2–4d 2D5/2 at 656.41 nm. Light emissions of sputtered species depend on energy of the incident ions deposited on the target surface atoms. Light emissions of the neutralized projectiles are formed due to many electrons of the conduction band of the solid surface captured in excited states of the incident ion.
Received: 29 August 2012      Published: 04 March 2013
PACS:  32.30.Jc (Visible and ultraviolet spectra)  
  32.80.Ee (Rydberg states)  
  33.20.Kf (Visible spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/013201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/013201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Zhi-Hu
XU Qiu-Mei
GUO Yi-Pan
WU Ye-Hong
SONG Zhang-Yong
[1] Lee C S, Chang Y C and Ji T Y 1979 Nucl. Instrum. Methods B 132 391
[2] Qayyum A, Akhtar M N and Riffa T 2005 Radat. Phys. Chem. 72 663
[3] Rajasekar P, Dane Scott et al 2006 Nucl. Instrum. Methods B 245 411
[4] Cazalilla M A, Lorente N et al 1998 Phys. Rev. B 58 13991
[5] Yang Z H, Song Z Y, Cui Y et al 2008 Acta Phys. Sin. 57 803 (in Chinese)
[6] Sigmund P 1969 Phys. Rev. 184 383
[7] Burgdoerfer J, Morgenstern R and Niehaus A 1986 J. Phys. B: At. Mol. Phys. 19 L507
Related articles from Frontiers Journals
[1] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 013201
[2] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 013201
[3] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 013201
[4] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 013201
[5] Shi-Quan Cao, Mao-Gen Su, Dui-Xiong Sun, Qi Min, Chen-Zhong Dong. Spatial-Resolved Measurement and Analysis of Extreme-Ultraviolet Emission Spectra from Laser-Produced Al Plasmas[J]. Chin. Phys. Lett., 2016, 33(04): 013201
[6] K. Chaudhary, S. Rosalan, M. S. Aziz, M. Bahadoran, J Ali, P. P. Yupapin, N. Bidin, Saktioto. Erratum: Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures [Chin. Phys. Lett. Vol. 32, No. 4, 043201(2015)][J]. Chin. Phys. Lett., 2015, 32(06): 013201
[7] ZOU Hong-Xin, WU Yue, CHEN Guo-Zhu, SHEN Yong, LIU Qu. Generation of Continuous-Wave 194 nm Laser for Mercury Ion Optical Frequency Standard[J]. Chin. Phys. Lett., 2015, 32(5): 013201
[8] K. Chaudhary, S. Rosalan, M. S. Aziz, M. Bohadoran, J Ali, P. P. Yupapin, N. Bidin, Saktioto. Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures[J]. Chin. Phys. Lett., 2015, 32(4): 013201
[9] WANG Qiang, LIN Yi-Ge, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. Observation of Spin Polarized Clock Transition in 87Sr Optical Lattice Clock[J]. Chin. Phys. Lett., 2014, 31(12): 013201
[10] XIE Feng, LI Dan, JIA Feng-Dong, ZHONG Zhi-Ping. An Analytical Derivation of a Symmetric Peak with Width Narrower than the Peak Width of the Probing Laser[J]. Chin. Phys. Lett., 2014, 31(1): 013201
[11] WANG Dong-Ying, WANG Yan-Fei, TAO Zhi-Ming, ZHANG Sheng-Nan HONG Ye-Long, ZHUANG Wei, CHEN Jing-Biao . Cs 455 nm Nonlinear Spectroscopy with Ultra-narrow Linewidth[J]. Chin. Phys. Lett., 2013, 30(6): 013201
[12] SUN Shao-Hua, LIU Xiao-Liang, LIU Zuo-Ye, WANG Xiao-Shan, DING Peng-Ji, LIU Qing-Cao, GUO Ze-Qin, HU Bi-Tao. The Angular Distribution of Optical Emission Spectroscopy from a Femtosecond Laser Filament in Air[J]. Chin. Phys. Lett., 2013, 30(4): 013201
[13] CAO Xiang-Nian, SU Mao-Gen, SUN Dui-Xiong, FU Yan-Biao, DONG Chen-Zhong. Theoretical Analysis of 4f and 5p Inner-Shell Excitations of W-W3+ Ions[J]. Chin. Phys. Lett., 2012, 29(11): 013201
[14] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 013201
[15] ZHANG Da-Cheng, MA Xin-Wen, WEN Wei-Qiang, ZHANG Peng-Ju, ZHU Xiao-Long, LI Bin, LIU Hui-Ping. Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample[J]. Chin. Phys. Lett., 2010, 27(6): 013201
Viewed
Full text


Abstract