Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060702    DOI: 10.1088/0256-307X/29/6/060702
GENERAL |
Fatigue-Induced Micro-damage Characterization of Austenitic Stainless Steel 316 Using Innovative Nonlinear Acoustics
Chung-Seok KIM1, Kyung-Young JHANG2**
1Automotive Engineering, Hanyang University, Hangdang-dong, Seongdong-gu, Seoul, 133-791, South Korea
2Mechanical Engineering, Hanyang University, Hangdang-dong, Seongdong-gu, Seoul, 133-791, South Korea
Cite this article:   
Chung-Seok KIM, Kyung-Young JHANG 2012 Chin. Phys. Lett. 29 060702
Download: PDF(541KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present innovative nonlinear acoustics for characterizing fatigue-induced micro-damage of austenitic stainless steel 316 subjected to high-cycle fatigue. Various fatigue-driven deformations are accumulated at several positions near the middle of hourglass-shaped specimens. A bell-shaped curve of acoustic nonlinearity as a function of position is observed, and the variation in acoustic nonlinearity is attributed to the evolution of a lattice defect (dislocation) and stress-induced martensite based on transmission electron microscopy (TEM) observations. An oblique incidence technique using a longitudinal waveform is a potentially viable method for characterizing the high-cycle fatigue deformation of austenitic stainless steel 316 alloys.
Received: 08 October 2011      Published: 31 May 2012
PACS:  07.64.+z (Acoustic instruments and equipment)  
  81.70.Cv (Nondestructive testing: ultrasonic testing, photoacoustic testing)  
  43.25.Dc (Nonlinear acoustics of solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060702       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chung-Seok KIM
Kyung-Young JHANG
[1] Cantrell J H and Yost W T 2001 Inter. J. Fatigue 23 487
[2] Kim C S, Park I K and Jhang K Y 2008 J. Korea Soc. Nondestruct. Test 28 285 (in Korean)
[3] Kim C S et al 2009 J. Korea Phys. Soc. 55 528 (in Korean)
[4] Jhang K Y 2009 Int. J. Precis. Eng. Man. 10 123
[5] Herrmann J et al 2006 J. Appl. Phys. 99 124913
[6] Xiang Y et al 2011 Ultrasonics 51 974
[7] Cantrell J H and Salama K 1991 Int. Mater. Rev. 36 125
[8] Palit Sagar S et al 2011 Mater. Sci. Eng. A 528 2895
[9] Kim C S et al 2011 Int. J. Mod. Phys. B 25 1385
[10] Kim C S and Lissenden C J 2009 Chin. Phys. Lett. 26 086107
[11] Kim C S et al 2005 Key Eng. Mater. 297 2134
[12] Frouin J, Sathish S, Matikas T E, and Na J K 1999 J. Mater. Res. 14 1295
[13] Nam T H, Choi S H, Lee T H, Jhang K Y and Kim C S 2010 J. Korean Phys. Soc. 57 1212 (in Korean)
[14] Kundu T 2004 Ultrasonic Nondestructive Evaluation: Engineering and Boilogical Material Characterization (New York: CRC) pp 364–433
[15] Kim J Y, Jacobs L J, Qu J and Littles J W 2006 J. Acoust. Soc. Am. 120 1266
[16] Matikas T E 2010 J. Mater. Eng. Perform. 19 751
[17] Verhoeven J D 1975 Fundamentals of Physical Metallurgy (New York: John Wiley & Sons) pp 457–512
Related articles from Frontiers Journals
[1] KIM Chung-Seok, JHANG Kyung-Young. Acoustic Nonlinearity of a Laser-Generated Surface Wave in a Plastically Deformed Aluminum Alloy[J]. Chin. Phys. Lett., 2012, 29(12): 060702
[2] Chung-Seok KIM, Cliff J. LISSENDEN. Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy[J]. Chin. Phys. Lett., 2009, 26(8): 060702
Viewed
Full text


Abstract