Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 084705    DOI: 10.1088/0256-307X/28/8/084705
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing
Krishnendu Bhattacharyya**, G. C. Layek
Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India
Cite this article:   
Krishnendu Bhattacharyya, G. C. Layek 2011 Chin. Phys. Lett. 28 084705
Download: PDF(494KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analysis is carried out to study a steady magnetohydrodynamic (MHD) boundary layer flow of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel. The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls. The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls. The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations. The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model. The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls, even in the absence of a magnetic field. Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter. It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid. The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physically.
Keywords: 47.15.Cb      47.15.Rq      47.60.Dx      47.65.-d     
Received: 02 January 2011      Published: 28 July 2011
PACS:  47.15.Cb (Laminar boundary layers)  
  47.15.Rq (Laminar flows in cavities, channels, ducts, and conduits)  
  47.60.Dx (Flows in ducts and channels)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/084705       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/084705
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Krishnendu Bhattacharyya
G. C. Layek
[1] Jeffery G B 1915 Phil. Mag. 29 455
[2] Hamal G 1917 Jahresber. Deutsch. Math. -Verein. 25 34
[3] Pohlhauesen K 1921 ZAMM 1 252
[4] Harrison W J 1919 Proc. Cambridge Philos. Soc. 19 307
[5] Tollmien W 1921 Akadeneisahe Verlagsgesellschaft 4 241
[6] Noether F 1931 Leipzig: J. A. Barch 5 733
[7] Dean W R 1934 Phil. Mag. 18 759
[8] Rosenhead L 1940 Proc. R. Soc. London A 175 436
[9] Holstein H 1943 Ahnliche laminare Reibungsschichten an durchlassigen Wanden ZWB-VM 3050
[10] Kamel M T 1987 Int. J. Eng. Sci. 25 759
[11] Hooper A, Duffy B R and Moffatt H K 1982 J. Fluid Mech. 117 283
[12] Sahoo R K and Sastri V M K 1997 Comput. Methods Appl. Mech. Eng. 146 31
[13] Sadeghy K, Khabazi N and Taghavi S M 2007 Int. J. Eng. Sci. 45 923
[14] Akulenko L D and Kumakshev S A 2008 J. Appl. Math. Mech. 72 296
[15] Zhang Z and Wang J 2007 Z. Angew. Math. Phys. 58 805
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 084705
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 084705
[3] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 084705
[4] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 084705
[5] GAO An-Ran, LIU Xiang, GAO Xiu-Li, LI Tie**, GAO Hua-Min, ZHOU Ping, WANG Yue-Lin . A Low Voltage Driven Digital-Droplet-Transporting-Chip by Electrostatic Force[J]. Chin. Phys. Lett., 2011, 28(8): 084705
[6] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 084705
[7] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 084705
[8] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 084705
[9] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 084705
[10] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 084705
[11] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 084705
[12] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 084705
[13] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 084705
[14] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 084705
[15] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 084705
Viewed
Full text


Abstract