Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 084209    DOI: 10.1088/0256-307X/28/8/084209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Reduction of the Far-Field Divergence Angle of an 850nm Multi-Leaf Holey Vertical Cavity Surface Emitting Laser
ZHOU Kang**, XU Chen, XIE Yi-Yang, ZHAO Zhen-Bo, LIU Fa, SHEN Guang-Di
Key Laboratory of Opto-electronics Technology (Ministry of Education), Beijing University of Technology, Beijing 100124
Cite this article:   
ZHOU Kang, XU Chen, XIE Yi-Yang et al  2011 Chin. Phys. Lett. 28 084209
Download: PDF(1603KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By introducing multi-leaf sectorial holes into an oxidation confined 850 nm vertical cavity surface emitting laser (VCSEL), the far-field divergence angle is reduced. The finite-difference time-domain method is used to simulate the far-field pattern of the multi-leaf holey VCSEL with different etching depths and different shapes of the oxide aperture in diameter R. Based on the simulation result, we design and fabricate a multi−leaf holey VCSEL and its divergence angle is only 6°. The experimental results agree well with the theoretical predication.
Keywords: 42.55.Px      42.60.Jf     
Received: 04 May 2011      Published: 28 July 2011
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/084209       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/084209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Kang
XU Chen
XIE Yi-Yang
ZHAO Zhen-Bo
LIU Fa
SHEN Guang-Di
[1] Weigl B, Grabherr M, Michalzik R, Reiner G and Ebeling K J 1996 IEEE Photon. Technol. Lett. 8 971
[2] Lear K L, Schneider R P, Choquette K D and Kilcoyne S P 1996 IEEE Photon. Technol. Lett. 8 740
[3] Oh T H, Huffaker D L and Deppe D G 1996 Appl. Phys. Lett. 69 3152
[4] Hegarty S P, Huyet G, McInerney J G, Choquette K D, Geib K M and Hou H Q 1998 Appl. Phys. Lett. 73 596
[5] Haglund J S, Gustavsson and Vukusic J 2004 IEEE Photon. Technol. Lett. 16 368
[6] Zhou D L and Mawst L J 2002 IEEE J. Quantum Electron. 38 1599
[7] Danner A J, Raftery J J, Yokouchi N and Choquette K D 2004 Appl. Phys. Lett. 84 1031
[8] Furukawa A, Hoshi M and Sasaki S 2005 Proc. SPIE 5722
[9] Liu A J, Chen W, Qu H W, Jiang B and Zheng W H 2009 Laser Phys. Lett. 7 213
[10] Raftery J J 2005 PhD Dissertation (Urbana-Champaign: University of Illinois)
[11] Xie Y Y, Xu C, Kan Q and Shen G D 2010 Chin. Phys. Lett. 27 024206
[12] Liu A J, Xing M X, Qu H W, Chen W, Zhou W J and Zheng W H 2009 Appl. Phys. Lett. 94 191105
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 084209
[2] MAO Yi-Wei, WANG Yao, CHEN Yang-Hua, XUE Zheng-Qun, LIN Qi, DUAN Yan-Min, SU Hui. Characteristic Optimization of 1.3 μm High-Speed MQW InGaAsP-AlGaInAs Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 084209
[3] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 084209
[4] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 084209
[5] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 084209
[6] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 084209
[7] SHEN Ying-Jie, YAO Bao-Quan, DAI Tong-Yu, LI-Gang, DUAN Xiao-Ming, JU You-Lun, WANG Yue-Zhu. Performance of a c− and a-Cut Ho:YAP Laser at Room Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 084209
[8] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 084209
[9] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, WANG Bao-Jun, BIAN Jing, MA Li, YU Wen-Ke, LOU Cai-Yun . Influence Factors of an All-Optical Recovered Clock from Two-Section DFB Lasers[J]. Chin. Phys. Lett., 2011, 28(9): 084209
[10] WANG Xiao-Long, TAO Tian-Jiong, CHENG Bing, WU Bin, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang** . A Digital Phase Lock Loop for an External Cavity Diode Laser[J]. Chin. Phys. Lett., 2011, 28(8): 084209
[11] LIU Jie**, YANG Ji-Min, WANG Wei-Wei, ZHENG Li-He, SU Liang-Bi, XU Jun . Kerr-Lens Self-Mode-Locked Laser Characteristics of Yb:Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2011, 28(7): 084209
[12] ZHOU Ya-Ting, **, SHI Yue-Chun, LI Si-Min, LIU Sheng-Chun, CHEN Xiang-Fei** . A Special Sampling Structure with an Arbitrary Equivalent-Phase-Shift for Semiconductor Lasers and Multiwavelength Laser Arrays[J]. Chin. Phys. Lett., 2011, 28(7): 084209
[13] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 084209
[14] ZHANG Jin-Chuan, , WANG Li-Jun**, LIU Wan-Feng, LIU Feng-Qi, YIN Wen, LIU Jun-Qi, LI Lu, WANG Zhan-Guo . Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser[J]. Chin. Phys. Lett., 2011, 28(7): 084209
[15] REN Zhi-Jun, LIANG Xiao-Yan**, YU Liang-Hong, LU Xiao-Ming, LENG Yu-Xin, LI Ru-Xin**, XU Zhi-Zhan** . Efficient Spherical Wavefront Correction near the Focus for the 0.89PW/29.0fs Ti:Sapphire Laser Beam[J]. Chin. Phys. Lett., 2011, 28(2): 084209
Viewed
Full text


Abstract