Chin. Phys. Lett.  2011, Vol. 28 Issue (7): 073701    DOI: 10.1088/0256-307X/28/7/073701
ATOMIC AND MOLECULAR PHYSICS |
An Optimum Method for a Grooved 2D Planar Ion Trap Design
JI Wei-Bang1, WAN Jin-Yin1, CHENG Hua-Dong1, LIU Liang1**
Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
Cite this article:   
JI Wei-Bang, WAN Jin-Yin, CHENG Hua-Dong et al  2011 Chin. Phys. Lett. 28 073701
Download: PDF(505KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate an effective grooved 2D ion chip design and optimize the ratio between the size of the rf electrodes and the groove. We calculate the optimal size of the groove using the analytical model, which was introduced by House, and the optimum result is obtained. We also obtain the simulated scattering points with the finite element analysis method. The analytical curve and simulated scattering points are coincident with each other. It is shown that this analytical model also fits for the grooved planar ion chip. Thus the optimum grooved 2D planar ion chip design could be obtained. It is effective for scalable quantum information processing.
Keywords: 37.10.Ty      03.67.-a     
Received: 18 April 2011      Published: 29 June 2011
PACS:  37.10.Ty (Ion trapping)  
  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/7/073701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I7/073701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JI Wei-Bang
WAN Jin-Yin
CHENG Hua-Dong
LIU Liang
[1] Paul W 1990 Rev. Mod. Phys. 62 531
[2] Fisk P T H 1997 Rep. Prog. Phys. 60 761
[3] Kielpinski D, Monroe C and Wineland D J 2003 Rev. Mod. Phys. 75 281
[4] Casanova J, García-Ripoll J J, Gerritsma R, Roos C F and Solano E 2010 Phys. Rev. A 82 020101
[5] Lamata L, León J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005
[6] Steane A 1997 Appl. Phys. B 64 623
[7] Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R and Wineland D J 2005 Quantum Inf. Comput. 5 419
[8] Chiaverini J and Lybarger W E 2008 Phys. Rev. A 77 022324
[9] Kim K Chang M S, Korenblit S, Islam R, Edwards E E, Freericks J K, Lin G D, Duan L M and Monroe C 2010 Nature 465 590
[10] Wan J Y, Wang Y Z and Liu L 2008 Chin. Phys. B 17 3565
[11] Imreh G 2008 PhD. Thesis (University of Oxford)
[12] House M G 2008 Phys. Rev. A 78 033402
[13] Dehmelt H G 1967 Adv. At. Mol. Phys. 3 53
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 073701
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 073701
[3] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 073701
[4] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 073701
[5] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 073701
[6] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 073701
[7] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 073701
[8] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 073701
[9] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 073701
[10] QIAN Yi, XU Jing-Bo** . Quantum Discord Dynamics of Two Atoms Interacting with Two Quantized Field Modes through a Raman Interaction with Phase Decoherence[J]. Chin. Phys. Lett., 2011, 28(7): 073701
[11] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 073701
[12] ZHANG Ji-Ying, ZHOU Zheng-Wei**, GUO Guang-Can . Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State[J]. Chin. Phys. Lett., 2011, 28(5): 073701
[13] SHI Yan-Li, MEI Feng, YU Ya-Fei, ZHANG Zhi-Ming** . Controlled Phase Gate Based on an Electron Floating on Helium[J]. Chin. Phys. Lett., 2011, 28(5): 073701
[14] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 073701
[15] CAI Jiang-Tao, ABLIZ Ahmad**, BAI Yan-Kui, JIN Guang-Sheng . Effects of Dzyaloshinskii–Moriya Interaction on Optimal Dense Coding Using a Two-Qubit Heisenberg XXZ Chain with and without External Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(2): 073701
Viewed
Full text


Abstract