Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 062101    DOI: 10.1088/0256-307X/28/6/062101
NUCLEAR PHYSICS |
The influence of Multi-Step Sequential Decay on Isoscaling and Fragment Isospin Distribution in GEMINI Simulation
ZHOU Pei1,2, TIAN Wen-Dong1**, MA Yu-Gang1**, CAI Xiang-Zhou1, FANG De-Qing1, WANG Hong-Wei1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 201800
2Graduate School of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
ZHOU Pei, TIAN Wen-Dong, MA Yu-Gang et al  2011 Chin. Phys. Lett. 28 062101
Download: PDF(681KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Extensive calculations on isoscaling behavior with the sequential-decay model GEMINI are performed for the mediate-heavy nuclei in the mass range A=110 and at excitation energies of up to 3 MeV per nucleon. Isoscaling can still be observed after entire−step decays are considered for the light products as in the only first-step decay process case. Comparison between the products after the first-step decay and the ones after entire-step decay demonstrates that multi-step secondary sequential decay strongly influences the isoscaling parameters α, β as well as the fragment isospin distribution. After entire−step decays, the isoscaling parameters α and β are decreased and the fragment isospin distribution can better reproduce the isospin distribution shape as the experimental data.
Keywords: 21.65.Ef      24.10.Pa      21.60.Ka      25.70.Gh     
Received: 01 February 2011      Published: 29 May 2011
PACS:  21.65.Ef (Symmetry energy)  
  24.10.Pa (Thermal and statistical models)  
  21.60.Ka (Monte Carlo models)  
  25.70.Gh (Compound nucleus)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/062101       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/062101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Pei
TIAN Wen-Dong
MA Yu-Gang
CAI Xiang-Zhou
FANG De-Qing
WANG Hong-Wei
[1] Lattimer J M et al 1991 Phys. Rev. Lett. 66 2701
[2] Lattimer J M and Prakash M 2000 Phys. Rep. 333 121
[3] Baran V, Colonna M, Greco V and Di Toro M 2005 Phys. Rep. 410 335
[4] Steiner A W, Prakash M, Lattimer J M and Ellis P J 2005 Phys. Rep. 411 325
[5] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[6] Tsang M B et al 2000 Phys. Rev. Lett. 86 5023
[7] Botvina A S, Lozhkin O V and Trautmann W 2002 Phys. Rev. C 65 044610
[8] Shetty D V et al 2003 Phys. Rev. C 68 021602(R)
[9] Souliotis G A et al 2003 Phys. Rev. C 68 024605
[10] Ono A et al 2003 Phys. Rev. C 68 051601
[11] Friedman W A 2004 Phys. Rev. C 69 031601(R)
[12] Veselsky M, Souliotis G A andYennello S J 2004 Phys. Rev. C 69 031602(R)
[13] Ma Y G et al 2004 Phys. Rev. C 69 064610
[14] Shetty D V et al 2004 Phys. Rev. C 70 011601(R)
[15] Geraci E et al 2004 Nucl. Phys. A 732 173
[16] Tian W D et al 2005 Chin. Phys. Lett. 22 306
[17] Raduta Ad R 2005 Eur. Phys. J. A 24 85
[18] Ma Y G et al 2005 Phys. Rev. C 72 064603
[19] Souliotis G A et al 2006 Phys. Rev. C 73 024606
[20] Dorso C O et al 2006 Phys. Rev. C 73 044601
[21] Tian W D, Ma Y G, Cai X Z et al 2007 Phys. Rev. C 76 024607
Tian W D, Ma Y G, Cai X Z et al 2007 Chin. Phys. Lett. 24 385
[22] Fang D Q, Ma Y G, Zhong C et al 2007 J. Phys. G 34 2173
[23] Su Q M, Ma Y G, Tian W D et al 2008 Chin. Phys. Lett. 25 2000
[24] Galanopoulos S et al 2010 Nucl. Phys. A 837 145
[25] Veselsky M et al 2010 Nucl. Phys. A 837 163
[26] Tsang M B et al 2006 Eur. Phys. J. A 30 129
[27] Shetty D V et al 2005 Phys. Rev. C 71 024602
[28] Le Fèvre A et al 2005 Phys. Rev. Lett. 94 162701
[29] Colonna A and Tsang M B 2006 Eur. Phys. J. A 30 165
[30] Fu Y, Fang D Q, Ma Y G et al 2010 Nucl. Phys. A 834 584c
Fu Y, Fang D Q, Ma Y G et al 2009 Chin. Phys. Lett. 26 082503
[31] Charity R J et al 1988 Nucl. Phys. A 483 371 (computer code GEMINI, see http://www. chemistry.wustl.edu/~rc/)
[32] Rentsch D et al 1993 Phys. Rev. C 48 2789
[33] Lleres A et al 1993 Phys. Rev. C 48 2753
[34] Hagel K et al 1994 Phys. Rev. C 50 2017
[35] Lleres A et al 1994 Phys. Rev. C 50 1973
[36] Ma Y G et al 2002 Phys. Rev. C 65 051602(R)
[37] Piantelli S et al 2006 Phys. Rev. C 74 034609
[38] Mocko M et al 2008 Phys. Rev. C 78 024612
[39] Amorini A et al 2009 Phys. Rev. Lett. 102 112701
[40] Gawlikowicz W et al 2010 Phys. Rev. C 81 014604
[41] Charity R J 2010 Phys. Rev. C 82 014610
[42] Charity R J 1998 Phys. Rev. C 58 1073
Related articles from Frontiers Journals
[1] MA Chun-Wang, PU Jie, WANG Shan-Shan, WEI Hui-Ling. The Symmetry Energy from the Neutron-Rich Nucleus Produced in the Intermediate-Energy 40,48Ca and 58,64Ni Projectile Fragmentation[J]. Chin. Phys. Lett., 2012, 29(6): 062101
[2] ZHANG Fang,HU Bi-Tao,YONG Gao-Chan,ZUO Wei. Effects of Symmetry Energy in the Reaction 40Ca+124Sn at 140 MeV/Nucleon[J]. Chin. Phys. Lett., 2012, 29(5): 062101
[3] ZHANG Fang**,LIU Yang,YONG Gao-Chan,ZUO Wei. Probing Nuclear Symmetry Energy with the Sub-threshold Pion Production[J]. Chin. Phys. Lett., 2012, 29(5): 062101
[4] ZHANG Zhi-Yuan, GAN Zai-Guo**, MA Long, HUANG Ming-Hui, HUANG Tian-Heng, WU Xiao-Lei, JIA Guo-Bin, LI Guang-Shun, YU Lin, REN Zhong-Zhou, ZHOU Shan-Gui, ZHANG Yu-Hu, ZHOU Xiao-Hong, XU Hu-Shan, ZHANG Huan-Qiao, XIAO Guo-Qing, ZHAN Wen-Long. Observation of the Superheavy Nuclide 271Ds[J]. Chin. Phys. Lett., 2012, 29(1): 062101
[5] LI Zeng-Hua, **, ZHANG Da-Peng, SCHULZE Hans-Josef, ZUO Wei. Second-Order Contribution of the Incompressibility in Asymmetric Nuclear Matter[J]. Chin. Phys. Lett., 2012, 29(1): 062101
[6] Sanjeev Kumar, Suneel Kumar. Systematic Study on System Size Dependence of Global Stopping: Role of Momentum-Dependent Interactions and Symmetry Energy[J]. Chin. Phys. Lett., 2010, 27(6): 062101
[7] FAN San-Hong, MENG Cai-Rong, LIU Fu-Hu. Emission of Neutral Pions with High Transverse Momenta in A-A and p-p Collisions at Energies Available at the BNL Relativistic Heavy Ion Collider[J]. Chin. Phys. Lett., 2010, 27(5): 062101
[8] SUN Jian-Xin, LIU Fu-Hu, WANG Er-Qin. Pseudorapidity Distributions of Charged Particles and Contributions of Leading Nucleons in Cu-Cu Collisions at High Energies[J]. Chin. Phys. Lett., 2010, 27(3): 062101
[9] JIANG Wei-Zhou, CHEN Yun-Peng, LU Xing. De-excitation Energy of Superdeformed Secondary Minima of Odd-Odd Au Isotopes and Its Sensitivity to the Density Dependence of Symmetry Energy[J]. Chin. Phys. Lett., 2010, 27(3): 062101
[10] JIANG Wei-Zhou, CHEN Yun-Peng, LU Xing. De-excitation Energy of Superdeformed Secondary Minima of Odd-Odd Au Isotopes and Its Sensitivity to the Density Dependence of Symmetry Energy[J]. Chin. Phys. Lett., 2010, 27(3): 062101
[11] WANG Hua-Lei, SONG Li-Tao, ZHAO Wei-Juan, LIU Zhong-Xia, ZHANG Yu-Hu, ZHOU Xiao-Hong, GUO Ying-Xiang, LEI Xiang-Guo. Observation of a Possible New Isomer in 175Ir[J]. Chin. Phys. Lett., 2010, 27(2): 062101
[12] BAI Chun-Lin, **, ZHANG HUAN-Qiao, ZHANG Xi-Zhen, XU Fu-Rong, H. Sagawa, G. Colò,. Effect of the Tensor Force on Charge-Exchange Spin-Dependent Multipole Excitations[J]. Chin. Phys. Lett., 2010, 27(10): 062101
[13] FU Yao, FANG De-Qing, MA Yu-Gang, CAI Xiang-Zhou, TIAN Wen-Dong, WANG Hong-Wei, GUO Wei. Isoscaling Behavior in 48,40Ca+9Be Collisions at Intermediate Energy Investigated by the HIPSE Model[J]. Chin. Phys. Lett., 2009, 26(8): 062101
[14] YAN Ting-Zhi, HU Si-Ke, GUO Wen-Xue, WANG Sheng-Long, XU Jin-Ping. Isospin Effects on Anisotropic Flows in Intermediate Energy Heavy Ion Collisions[J]. Chin. Phys. Lett., 2009, 26(11): 062101
[15] MENG Cai-Rong. Transverse Momentum and Rapidity Distributions of Φ Mesons Produced in Pb-Pb Collisions at SPS Energies[J]. Chin. Phys. Lett., 2009, 26(10): 062101
Viewed
Full text


Abstract