Chin. Phys. Lett.  2010, Vol. 27 Issue (10): 106201    DOI: 10.1088/0256-307X/27/10/106201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template
YU Yan-Long1, ZHENG Li-Hui1, XU Xin1, SUN Hong-Yu2**
1Department of Applied Technology, Daqing Petroleum Institute, Qinhuangdao 066004
2Beijing National Center for Electron Microscopy, The State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
Cite this article:   
YU Yan-Long, ZHENG Li-Hui, XU Xin et al  2010 Chin. Phys. Lett. 27 106201
Download: PDF(805KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The thermal expansion behavior of semiconductor single-crystal nanowire arrays is of importance for their applications in electronic and optoelectronic nanodevices. We prepare hexagonal ZnS single-crystal nanowire arrays growing along the [110] direction via electrodeposition. The thermal expansion properties of the as-prepared ZnS nanowires have been studied by in situ x-ray diffraction method. The thermal expansion coefficient (TEC) of the ZnS nanowires decreases consistently from room temperature to 225°C where it reaches a minimum value, and then increases rapidly. The average TEC in the studied temperature range is 4.74×10−6/°C, which is smaller than that of the conventional bulk counterpart.
Keywords: 62.23.Hj      82.45.-h      65.40.De     
Received: 16 November 2009      Published: 26 September 2010
PACS:  62.23.Hj (Nanowires)  
  82.45.-h (Electrochemistry and electrophoresis)  
  65.40.De (Thermal expansion; thermomechanical effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/10/106201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I10/106201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Yan-Long
ZHENG Li-Hui
XU Xin
SUN Hong-Yu
[1] Hu J Q, Bando Y, Zhan J H and Golberg D 2004 Angew. Chem. Int. Ed. 43 4606
[2] Fang X S, Bando Y, Ye C H, Shen G Z and Golberg D 2007 J. Phys. Chem. C 111 8469
[3] Shen G Z, Bando Y and Golberg D 2007 Int. J. Nanotechnol. 4 730
[4] Barrelet C J, Wu Y, Bell D C and Lieber C M 2003 J. Am. Chem. Soc. 125 11498
[5] Wang Z L and Song J H 2006 Science 312 242
[6] Wu Y Y and Yang P D 2001 Adv. Mater. 13 520
[7] Wang Y H, Yang J J, Ye C H, Fang X S and Zhang L D 2004 Nanotechnology 15 1437
[8] Wang Y H, Zhao H, Hu Y H, Ye C H and Zhang L D 2007 J. Cryst. Growth 305 8
[9] Li L, Zhang Y, Wang Y W, Huang X H, Li G H and Zhang L D 2005 Appl. Phys. Lett. 87 031912
[10] Zhu Y G, Dou X C, Huang X H, Li L and Li G H 2006 J. Phys. Chem. B 110 26189
[11] Xu X J, Fei G T, Yu W H, Chen L, Zhang L D, Ju X, Hao X P and Wang B Y 2006 Appl. Phys. Lett. 88 211902
[12] Xu X J, Fei G T, Yu W H, Zhang L D, Ju X, Hao X P, Wang D N and Wang B Y 2006 Appl. Phys. Lett. 89 181914
[13] Zhou Y, Fei G T, Cui P, Wu B, Wang B and Zhang L D 2008 Nanotechnology 19 2857111
[14] Lee J Y, Kim D S and Park J 2007 Chem. Mater. 19 4663
[15] Wang Z L 2007 Adv. Mater. 19 889
[16] Law M, Goldberger J and Yang P D 2004 Annu. Rev. Mater. Res. 34 83
[17] Wang Z W, Daemen L L, Zhao Y S, Zha C S, Downs R T, Wang X D, Wang Z L and Hemley R J 2005 Nat. Mater. 4 922
[18] Chen C C, Herhold A B, Johnson C S and Alivisatos A P 1997 Science 276 398
[19] Suyver J F, Wuister S F, Kelly J J and Meijerink A 2001 Nano Lett. 1 429
[20] Duan X F and Lieber C M 2000 Adv. Mater. 12 298
[21] Hsin C L, Hsin C L, He J H, Lee C Y, Wu W W, Yeh P H, Chen L J and Wang Z L 2007 Nano Lett. 7 1799
[22] Masuda H and Fukuda K 1995 Science 268 1466
[23] Xu X J, Fei G T, Yu W H, Wang X W, Chen L and Zhang L D 2006 Nanotechnology 17 426
[24] Saotome T, Ohashi K, Sato T, Maeta H, Haruna K and Ono F 1998 J. Phys.: Condens. Matter 10 1267
[25] Kumar V and Sastry B S R 2001 Cryst. Res. Technol. 36 565
[26] Wang Z Y, Lu Q F, Fang X S, Tian X K and Zhang L D 2006 Adv. Funct. Mater. 16 661
[27] Sarkar J, Khan G G and Basumallick A 2007 Bull. Mater. Sci. 30 271
[28] Zhao W B, Zhu J J and Chen H Y 2004 Scr. Mater. 50 1169
[29] Shan C X, Liu Z and Hark S K 2007 Appl. Phys. Lett. 90 193123
[30] Kuykendall T, Pauzauskie P J, Zhang Y, Goldberger J, Sirbuly D, Denlinger J and Yang P D 2004 Nature Mater. 3 524
[31] Chang M, Cao X L, Xu X J and Zhang L D 2008 Phys. Lett. A 372 273
Related articles from Frontiers Journals
[1] CHEN Ke, HE Jian-Jun, LI Ming-Yu, LaPierre R. Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching[J]. Chin. Phys. Lett., 2012, 29(3): 106201
[2] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 106201
[3] XIE Shi-Feng, CHEN Shang-Da**, SOH Ai-Kah . The Effect of Atomic Vacancies and Grain Boundaries on Mechanical Properties of GaN Nanowires[J]. Chin. Phys. Lett., 2011, 28(6): 106201
[4] LI Bin, **, LI Chuan-Xi, WEI Cheng-Long, . Surface Effects on the Postbuckling of Nanowires[J]. Chin. Phys. Lett., 2011, 28(4): 106201
[5] LIU Xi**, LIU Wei, HE Qiang, DENG Li-Wei, WANG He-Jin, HE Duan-Wei, LI Bao-Sheng . Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2[J]. Chin. Phys. Lett., 2011, 28(3): 106201
[6] QIU Ming-Xia, RUAN Shuang-Chen**, GAO Biao, HUO Kai-Fu, ZHAI Jian-Pang, LI Ling, LIAO Hui, XU Xin-Tong . H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism[J]. Chin. Phys. Lett., 2011, 28(10): 106201
[7] ZHANG Lei, YANG Jun-He**, WANG Xian-Ying**, HE Xing, ZHAO Bin, TANG Zhi-Hong, YANG Guang-Zhi, QIU Han-Xun . Thermal Properties of Poly(vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) (PVVH) Polymer and Its Application in ZnO Based Nanogenerators[J]. Chin. Phys. Lett., 2011, 28(1): 106201
[8] LIANG Wen-Xi, ZHU Peng-Fei, WANG Xuan, NIE Shou-Hua, ZHANG Zhong-Chao, Clinite Rick, CAO Jian-Ming, SHENG Zheng-Ming, ZHANG Jie,. Ultrafast Electron Diffraction with Spatiotemporal Resolution of Atomic Motion[J]. Chin. Phys. Lett., 2009, 26(2): 106201
[9] NIE Chao, ZHANG Rong, XIE Zi-Li, XIU Xiang-Qiang, LIU Bin, FU De-Yi, LIU Qi-Jia, HAN Ping, GU Shu-Lin, SHI Yi, ZHENG You-Dou. Synthesis of [100] Wurtzite InN Nanowires and [011] Zinc-Blende InN Nanorods[J]. Chin. Phys. Lett., 2008, 25(5): 106201
[10] HAO Yan-Ming, HE Xiao-Hong, AN Li-Qun, FU Bin. Thermal Expansion Anomaly of Tb2Fe14Cr3 Compound[J]. Chin. Phys. Lett., 2008, 25(2): 106201
[11] ZHANG Dong-Dong, XUE Cheng-Shan, ZHUANG Hui-Zhao, HUANG Ying-Long, WANG Zou-Ping, WANG Ying, GUO Yong-Fu. Fabrication and Characterization of Mg-Doped GaN Nanowires[J]. Chin. Phys. Lett., 2008, 25(11): 106201
[12] WU Di, GONG Ye, LIU Jin-Yuan, WANG Xiao-Gang, LIU Yue, MA Teng-Cai. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation[J]. Chin. Phys. Lett., 2006, 23(8): 106201
[13] FANG Dai-Ning, SUN Yu-Xin, SOH Ai-Kah. Analysis of Frequency Spectrum of Laser-Induced Vibration of Microbeam Resonators[J]. Chin. Phys. Lett., 2006, 23(6): 106201
[14] NI Fu-Sheng, GU Guo-Qing, CHEN Kang-Min. Low-Frequency Dielectric Dispersion of Highly Concentrated Spherical Particles in an Electrolyte Solution[J]. Chin. Phys. Lett., 2002, 19(10): 106201
Viewed
Full text


Abstract