Chin. Phys. Lett.  2009, Vol. 26 Issue (11): 114701    DOI: 10.1088/0256-307X/26/11/114701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment
LI Zhang-Guo1, LIU Qiu-Sheng1, LIU Rong1, HU Wei2, DENG Xin-Yu2
1Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 1001902Beijing Institute of Astronautical Systems Engineering, Beijing 100076
Cite this article:   
LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong et al  2009 Chin. Phys. Lett. 26 114701
Download: PDF(754KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A computational simulation is conducted to investigate the influence of Rayleigh-Taylor instability on liquid propellant reorientation flow dynamics for the tank of CZ-3A launch vehicle series fuel tanks in a low-gravity environment. The volume-of-fluid (VOF) method is used to simulate the free surface flow of gas-liquid. The process of the liquid propellant reorientation started from initially flat and curved interfaces are numerically studied. These two different initial conditions of the gas-liquid interface result in two modes of liquid flow. It is found that the Rayleigh-Taylor instability can be reduced evidently at the initial gas-liquid interface with a high curve during the process of liquid reorientation in a low-gravity environment.
Keywords: 47.20.Ma      47.85.L-      47.55.Ca     
Received: 17 August 2009      Published: 30 October 2009
PACS:  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  47.85.L- (Flow control)  
  47.55.Ca (Gas/liquid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/11/114701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I11/114701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zhang-Guo
LIU Qiu-Sheng
LIU Rong
HU Wei
DENG Xin-Yu
[1] Ostrach S 1982 Ann. Rev. Fluid Mech. 14 313
[2] Moran M E 2006 NASA/TM 2006-214264
[3] NASA Center 2005 NASA/TM 2005-214062
[4] Bradshaw R D and Kramer J L AIAA No 74-1076
[5] Long L H 1999 Missiles and Space Vehicles 2391
[6] Long L H 1999 Missiles and Space Vehicles 2401
[7] Sharp D H 1984 Physica D 12 3
[8] Rayleigh L 1883 Proc. London Math. Soc. 14 170
[9] Taylor G I 1950 Proc. Roy. Soc. London A 201192
[10] Fu D X, Ma Y W and Li X L 2008 Chin. Phys. Lett. 25 188
[11] Zhang X and Tan D W 2009 Chin. Phys. Lett. 26084703
[12] Scardovelli R and Zaleski S 1999 Ann. Rev. Mech. 31 567
[13] Hirt C W and Nichols B D 1981 J. Comput. Phys. 39 201
[14] Brackbill J U, Kothe D B and Zemach C 1992 J.Comput. Phys. 100 335
[15] Bussmann M, Mostaghimi J and Chandra S 1999 Phys.Fluids 11 1406
Related articles from Frontiers Journals
[1] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 114701
[2] TAN Lei, CAO Shu-Liang**, WANG Yu-Ming, ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate[J]. Chin. Phys. Lett., 2012, 29(1): 114701
[3] LUO Xian-Wu**, JI Bin, ZHANG Yao, XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil[J]. Chin. Phys. Lett., 2012, 29(1): 114701
[4] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 114701
[5] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 114701
[6] HUANG Biao, WANG Guo-Yu** . Evaluation of a Filter-Based Model for Computations of Cavitating Flows[J]. Chin. Phys. Lett., 2011, 28(2): 114701
[7] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 114701
[8] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 114701
[9] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 114701
[10] XIN Xiao-Feng, CHEN Cheng, WANG Bo-Fu, MA Dong-Jun, SUN De-Jun. Local Heating Effect of Flow Past a Circular Cylinder[J]. Chin. Phys. Lett., 2010, 27(4): 114701
[11] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 114701
[12] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 114701
[13] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 114701
[14] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 114701
[15] ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures[J]. Chin. Phys. Lett., 2010, 27(1): 114701
Viewed
Full text


Abstract