Width-Dependent Optical Properties for Zigzag-Edge Silicene Nanoribbons
Hai-Rui Bao1 , Wen-Hu Liao1,2** , Xin-Cheng Zhang1 , Min Zuo1
1 College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 4160002 Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province, Jishou University, Jishou 416000
Abstract :We study theoretically the optical response for perfect zigzag-edge silicene nanoribbons with $N$ silicon atoms of the A and B sublattices ($N$-ZSiNRs) under the irradiation of an external electromagnetic field at low temperatures. The 8- and 16-ZSiNRs are demonstrated to exhibit a broad energy regime of absorption coefficient, refractive index, extinction coefficient, and reflectivity from infrared to ultraviolet, utilizing the dipole-transition theorem for semiconductors. The optical spectra for 8- and 16-ZSiNRs may be classified into two types of the transitions, one between valence and conduction subbands with the same parity, and the other among the edge state and bulk state subbands. With the increase of the ribbon width, the optical spectra for ZSiNRs are proved to exhibit red shift and blue shift at the lower and higher energy regimes, respectively. The obtained novel features are believed to be of significance in designs of silicene-based optoelectronic devices.
收稿日期: 2017-09-25
出版日期: 2017-12-17
:
33.20.Ea
(Infrared spectra)
42.25.Bs
(Wave propagation, transmission and absorption)
07.57.Hm
(Infrared, submillimeter wave, microwave, and radiowave sources)
[1] Guzmán-Verri G G and Lew Y V L C 2007 Phys. Rev. B 76 075131 [2] Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804 [3] Houssa M, Pourtois G, Afanas'ev V V and Stesmans A 2010 Appl. Phys. Lett. 96 082111 [4] Tran V and Yang L 2014 Phys. Rev. B 89 245407 [5] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [6] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109 [7] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501 [8] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507 [9] De Padova P, Kubo O, Olivieri B, Quaresima C, Nakayama T, Aono M and Le Lay G 2012 Nano Lett. 12 5500 [10] Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802 [11] Liu C C, Jiang H and Yao Y G 2011 Phys. Rev. B 84 195430 [12] Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D and Lu J 2012 Nano Lett. 12 113 [13] Drummond N D, Zólyomi V and Fal'ko V I 2012 Phys. Rev. B 85 075423 [14] Cahangirov S, Topsakal M and Ciraci S 2010 Phys. Rev. B 81 195120 [15] Song Y L, Zhang Y, Zhang J M and Lu D B 2010 Appl. Surf. Sci. 256 6313 [16] Ding Y and Ni J 2009 Appl. Phys. Lett. 95 083115 [17] Ding Y and Wang Y L 2014 Appl. Phys. Lett. 104 083111 [18] Ezawa M 2012 Europhys. Lett. 98 67001 [19] Tahir M, Manchon A, Sabeeh K and Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412 [20] Ezawa M 2013 Eur. Phys. J. B 86 139 [21] Dyrdal A and Barnas J 2012 Phys. Status Solidi RRL 6 340 [22] Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H and Yao Y G 2014 Phys. Rev. Lett. 112 106802 [23] Tahir M and Schwingenschlogl U 2013 Sci. Rep. 3 1075 [24] Yokoyama T 2013 Phys. Rev. B 87 241409 [25] Wang Y and Lou Y Y 2013 J. Appl. Phys. 114 183712 [26] Kang J, Wu F and Li J 2012 Appl. Phys. Lett. 100 233122 [27] Liang Y Y, Wang V, Mizuseki H and Kawazoe Y 2012 J. Phys.: Condens. Matter 24 455302 [28] An X T, Zhang Y Y, Liu J J and Li S S 2013 Appl. Phys. Lett. 102 213115 [29] Yokoyama T 2014 New J. Phys. 16 085005 [30] Zberecki K, Wierzbicki M, Barnaś J and Swirkowicz R 2013 Phys. Rev. B 88 115404 [31] Ezawa M 2012 Phys. Rev. B 86 161407 [32] Tabert C J and Nicol E J 2013 Phys. Rev. Lett. 110 197402 [33] Tabert C J and Nicol E J 2013 Phys. Rev. B 88 085434 [34] Arzate N, Váquez-Nava R A, Cabellos J L, Carriles R, Castro-Camus E, Figueroa-Delgadillo M E and Mendoza B S 2011 Opt. Lasers Eng. 49 668 [35] Matthes L, Gori P, Pulci O and Bechstedt F 2013 Phys. Rev. B 87 035438 [36] Bechstedt F, Matthes L, Gori P and Pulci O 2012 Appl. Phys. Lett. 100 261906 [37] Bao H R, Liao W H, Guo J J, Zhao H P and Zhou G H 2015 Laser Phys. Lett. 12 095902 [38] Bao H R, Liao W H, Guo J J, Yang X X, Zhao H P and Zhou G H 2015 J. Phys. D 48 455306 [39] Shyu F L 2017 Physica E 85 117 [40] Zou J F and Ji Y 2017 J. Phys.: Conf. Ser. 844 012018 [41] Liao W H, Zhou G H and Xi F 2008 J. Appl. Phys. 104 126105 [42] Chu R L, Li X, Wu S F, Niu Q, Yao W, Xu X D and Zhang C W 2014 Phys. Rev. B 90 045427 [43] Li L L, Moldovan D, Xu W and Peeters F M 2017 Nanotechnology 28 085702 [44] Wakabayashi K, Sasaki K L, Nakanishi T and Enoki T 2010 Sci. Technol. Adv. Mater. 11 054504 [45] Luck J M and Avishai Y 2015 J. Phys.: Condens. Matter 27 025301 [46] Hsu H and Reichl L E 2007 Phys. Rev. B 76 045418 [47] Zhou B L, Zhou B H, Chen X W, Liao W H and Zhou G H 2015 J. Phys.: Condens. Matter 27 465301
[1]
. [J]. 中国物理快报, 2016, 33(02): 24207-024207.
[2]
LIU Xiao-Dong;**;Hagihala Masato;ZHENG Xu-Guang;**;MENG Dong-Dong;GUO Qi-Xin
. Raman and Mid-IR Spectral Analysis of the Atacamite-Structure Hydroxyl/Deuteroxyl Nickel Chlorides Ni2 (OH/D)3 Cl [J]. 中国物理快报, 2011, 28(8): 87805-087805.
[3]
JIANG Xiu-Lan;LI Dong-Fei;SUN Cheng-Lin;LI Zhan-Long;YANG Guang;ZHOU Mi;LI Zuo-Wei;**;GAO Shu-Qin
. Relationship between Fermi Resonance and Solvent Effects [J]. 中国物理快报, 2011, 28(5): 53301-053301.
[4]
LIU Xiao-Dong;**;Hagihala Masato;ZHENG Xu-Guang;**;TAO Wan-Jun;MENG Dong-Dong;ZHANG Sen-Lin;GUO Qi-Xin
. Trimeric Hydrogen Bond in Geometrically Frustrated Hydroxyl Cobalt Halogenides [J]. 中国物理快报, 2011, 28(1): 17803-017803.
[5]
Srinivasa Rao Karumuri. Vibrational Spectra of Distorted Structure Molecules by Using Lie Algebraic Techniques: an Application to Copper and Magnesium Octaethyl Porphyrin [J]. 中国物理快报, 2010, 27(10): 103301-103301.
[6]
QI Chun-Chao;ZUO Du-Luo;LU Yan-Zhao;TANG Jian;YANG Chen-Guang;KE Lin-Da;CHENG Zu-Hai;. An Efficient Photon Conversion Efficiency Ammonia Terahertz Cavity Laser [J]. 中国物理快报, 2009, 26(12): 124201-124201.
[7]
Srinivasa Rao KARUMURI;Joydeep CHOUDHURY;Nirmal Kumar SARKAR;Ramendu BHATTACHARJEE. Vibrational Spectroscopy of Stretching and Bending Modes of Nickel Tetraphenyl Porphyrin: an Algebraic Approach [J]. 中国物理快报, 2009, 26(9): 93301-093301.
[8]
DENG Lun-Hua;GAO Xiao-Ming;CAO Zhen-Song;ZHAO Wei-Xiong;ZHANG Wei-Jun. High Resolution and High Sensitivity Measurement of Methane at 1.51μm [J]. 中国物理快报, 2006, 23(9): 2415-2417.
[9]
ZHAO Dong-Hui;XIA Fang;NIE Jia-Xiang;CHEN Guo-Rong;ZHANG Xiang-Hua;MA Hong-Li;ADAM Jean-Luc. Gadolinium-Induced Multi-Effect on Properties of IR Transmitting Chalcogenide Glasses [J]. 中国物理快报, 2004, 21(3): 514-516.
[10]
LI Guo-Qiang;JIE Wan-Qi;GU Zhi;HUA Hui. Correlation Between the IR Transmission Spectra and the CdZnTe Qualities [J]. 中国物理快报, 2003, 20(9): 1600-1602.
[11]
SONG Hong-Wei;Herbert L. Strauss. Infrared Spectral Hole-Burning and Spectral Diffusion of Vibrational N-D Bands in a Disordered Tutton Salt
[J]. 中国物理快报, 2002, 19(1): 44-46.
[12]
LIN Hai;YUAN Lan-Feng;WANG Dong;ZHU Qing-Shi. Nonlinearity of the Dipole Moment Surface and Intensities Anomaly of CHCl3 [J]. 中国物理快报, 2000, 17(1): 13-15.
[13]
WU Ke-chen;LI Jun;. Infrared Absorption Cut-Off of Molecular Nonlinear Optical Crystals: Theoretical Studies on Vibrational Spectra of MDNB, Urea and MNA Molecules [J]. 中国物理快报, 1999, 16(12): 925-927.
[14]
CHENG Ji-xin;WANG Xiao-gang;LIN Hai;ZHU Qing-shi. Symmetry Reduction and Rotational Re-quantization of Symmetric Top Molecules at Local Mode Limit [J]. 中国物理快报, 1997, 14(9): 656-659.
[15]
LI Shijie;XU Xiaoping;LI Wenzhu;QIU Peihua;WANG Wenyao. Surface-Enhanced Third-Order Nonlinear Optical Response of C60 Films on Roughed Glass Plate
[J]. 中国物理快报, 1993, 10(10): 598-600.