1Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei 230031 2Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230031 3Institute of Applied Physics, Army Officer Academy, Hefei 230031 4Teaching and Research Department of Physics, Tongling University, Tongling 244000
Abstract:Based on the surface temperature measured by the infrared camera on the experimental advanced superconducting tokamak (EAST), the heat fluxes on the lower outer divertor target plate during H-mode with the lower-hybrid wave current drive (LHCD) only and with the LHCD combined with the neutral beam injection (NBI) are calculated by the DFLUX code and compared. The analyzed discharges are lower single null divertor configuration discharges. In the case with the LHCD only ($I_{\rm p}\sim 400$ kA, $P_{\rm LHCD}\sim2$ MW), ELM-free appears after L-H transition with the peak heat flux on the lower outer target plate less than 1 MW/m$^{2}$. However, there is no ELM-free appearing after the L-H transition in the case with the LHCD+NBI ($I_{\rm p}\sim300$ kA, $P_{\rm LHCD}+P_{\rm NBI}\sim2$ MW). The results show that the peak heat fluxes on the lower outer target plate in the LHCD+NBI H-mode cases are larger than those in the LHCD H-mode under the similar auxiliary heating power. This is because the heat flux profiles of the lower outer target plate as a function of plate location in ELMing with the LHCD+NBI are narrower than those with the LHCD only. The results are consistent with the results in terms of the scrape-off layer width observed in the EAST.
Wang L, Makowski M A and Guo H Y 2016 22 International Conference on Plasma Surface Interactions in Controlled Fusion Device (Rome, Italy May 30–June 3, 2016)