Abstract:The investigation of runaway electrons is expanded by different methods. The aim of this study is to show sawtooth oscillations of hard x-ray emission and with the help of sawtooth oscillations to obtain radial diffusion coefficient and magnetic fluctuations. In the same way, the hard x-ray spectral evaluation is compared in several time intervals and it is shown that during discharge, the energy of the runaway electrons is less than 200 keV. Also, for typical plasmas, population of runaway electrons is measured at seven time intervals of 5 ms and temporal evaluation of runaway electron mean energy. The sawtooth-like shape is observed in the hard x-ray range (10–1000 keV). By the sawtooth oscillation method, the RE diffusion coefficient in radial transport in the IR-T1 plasma is $D_{\rm r}\sim 0.5$ m$^2$s$^{-1}$. The magnetic field fluctuation due to magnetic diffusion $D_{\rm m}$ is given as $\frac{b_{\rm r}}{B_{\rm t}}\sim 10^{-4}$.
. [J]. 中国物理快报, 2017, 34(8): 85202-.
N. Hasanvand, S. Meshkani, M. Ghoranneviss. The Diffusion Coefficient Using Sawtooth Oscillation in IR-T1 Tokamak. Chin. Phys. Lett., 2017, 34(8): 85202-.
Esposito B, Martin-solis R, Van belle P, Jarvis O N, Marcus F B, Sadler G, Sanchez R, Fischer B, Froissard P and Adams J M 1996 Plasma Phys. Control Fusion.38 2035
Fredrickson E D, Callen J D, McGuire K, Bell J D, Colchin R G, Efthimion P C, Hill K W, Izzo R, Mikkelsen D R, Monticello D A, Pare V, Taylor G and Zarnstorff M 1986 Nucl. Fusion26 849