Microstructure and Deuterium Retention of Tungsten Deposited by Hollow Cathode Discharge in Deuterium Plasma
Zhong-Chao Sun1 , Zi-Wei Lian1 , Wei-Na Qiao1 , Jian-Gang Yu1 , Wen-Jia Han1 , Qing-Wei Fu1,2 , Kai-Gui Zhu1,2**
1 Department of Physics, Beihang University, Beijing 1001912 Beijing Key Laboratory of Advanced Nuclear Energy Materials and Physics, Beihang University, Beijing 100191
Abstract :Tungsten has been chosen as one of the most promising candidates as the plasma-facing material in future fusion reactors. Although tungsten has numerous advantages compared with other materials, issues including dust are rather difficult to deal with. Dust is produced in fusion devices by energetic plasma-surface interaction. The re-deposition of dust particles could cause the retention of fuel atoms. In this work, tungsten is deposited with deuterium plasma by hollow cathode discharge to simulate the dust production in a tokamak. The morphology of the deposited tungsten can be described as a film with spherical particles on it. Thermal desorption spectra of the deposited tungsten show extremely high desorption of the peak positions. It is also found that there is a maximum retention of deuterium in the deposited tungsten samples due to the dynamic equilibrium of the deposition and sputtering process on the substrates.
收稿日期: 2017-07-06
出版日期: 2017-11-24
:
52.55.Fa
(Tokamaks, spherical tokamaks)
52.40.Hf
(Plasma-material interactions; boundary layer effects)
28.52.Fa
(Materials)
引用本文:
. [J]. 中国物理快报, 2017, 34(12): 125203-.
Zhong-Chao Sun, Zi-Wei Lian, Wei-Na Qiao, Jian-Gang Yu, Wen-Jia Han, Qing-Wei Fu, Kai-Gui Zhu. Microstructure and Deuterium Retention of Tungsten Deposited by Hollow Cathode Discharge in Deuterium Plasma. Chin. Phys. Lett., 2017, 34(12): 125203-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/34/12/125203
或
https://cpl.iphy.ac.cn/CN/Y2017/V34/I12/125203
[1] Rosanvallon S, Grisolia C, Andrew P, Ciattaglia S, Delaporte P, Douai D, Garnier D, Gauthier E, Gulden W and Hong S H 2009 J. Nucl. Mater. 390 57 [2] Carmack W J and Anderl R A 2000 Fusion Eng. Des. 51 477 [3] Mccarthy K A, Petti D A, Carmack W J and Smolik G R 1998 Fusion Eng. Des. 42 45 [4] Tsujikawa H, Maruoka S, Koeda M, Uryu S, Funaba K, Shibanuma K, Kakudate S, Kanamori N, Tada E and Ohkawa Y 1996 Vacuum 47 639 [5] Hassanein A, Wiechers B and Konkashbaev I 1998 J. Nucl. Mater. 258 295 [6] Mayer M, Behrisch R, Andrew P, Coad J P and Peacock A T 1999 Phys. Scr. T81 13 [7] Sharpe J P, Petti D A and Bartels H W 2002 Fusion Eng. Des. 63 153 [8] Baluc N, Abe K, Boutard J L, Chernov V M, Diegele E, Jitsukawa S, Kimura A, Klueh R L, Kohyama A and Kurtz R J 2007 Nucl. Fusion 47 S696 [9] Luo G N, Zhang X D, Yao D M, Gong X Z, Chen J L, Yang Z S, Li Q, Shi B and Li J G 2007 Phys. Scr. T128 1 [10] Roth J, Tsitrone E, Loarte A, Loarer Th, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M and Coad P 2009 J. Nucl. Mater. 390 1 [11] Fortunazalesna E, Grzonka J, Rasinski M, Balden M, Rohde V and Kurzydlowski K J 2014 Phys. Scr. T159 014066 [12] Sharpe J P, Humrickhouse P W, Skinner C H, Tanabe T, Masaki K, Miya N and Sagara A 2005 J. Nucl. Mater. 337 1000 [13] Grisolia C, Hodille E, Chene J, Garcia-Argote S, Pieters G, El-Kharbachi A, Marchetti L, Martin F, Miserque F and Vrel D 2014 J. Nucl. Mater. 463 885 [14] Han Q, Wang J and Zhang L Z 2016 Plasma Sci. Technol. 18 72 [15] Zhang L, He F, Li S C and Ouyang J T 2013 Chin. Phys. B 22 125202 [16] Chapman B and Vossen J L 1980 Glow Discharge Processes: Sputtering and Plasma Etching . (New York: Wiley) [17] Ferrar C 1981 IEEE J. Quantum Electron. 17 817 [18] Poon M, Haasz A A, Davis J W and Macaulay-Newcombe R G 2003 J. Nucl. Mater. 313 199 [19] Tanabe T 2014 Phys. Scr. T159 014044 [20] Fukumoto K I, Matsui H, Candra Y, Takahashi K, Sasanuma H, Nagata S and Takahiro K 2000 J. Nucl. Mater. 283 535 [21] Peng H Y, Lee H T, Ohtsuka Y and Ueda Y 2013 J. Nucl. Mater. 438 S1063 [22] Ogorodnikova O V, Roth J and Mayer M 2008 J. Appl. Phys. 103 034902 [23] Poon M, Haasz A A and Davis J W 2008 J. Nucl. Mater. 374 390 [24] Wang P, Jacob W, Gao L, Elgeti and Balden M 2014 Phys. Scr. T159 014046 [25] Ogorodnikova O V, Roth J and Mayer M 2003 J. Nucl. Mater. 313-316 469 [26] Lian Z W, Fang X Q, Han W J, Yu J G, Wang Z L, Zhang Y and Zhu K G 2016 Fusion Eng. Des. 112 136
[1]
. [J]. 中国物理快报, 2022, 39(11): 115202-.
[2]
. [J]. 中国物理快报, 2022, 39(2): 25201-.
[3]
. [J]. 中国物理快报, 2021, 38(8): 85201-.
[4]
. [J]. 中国物理快报, 2021, 38(5): 55201-.
[5]
. [J]. 中国物理快报, 2021, 38(5): 55202-.
[6]
. [J]. 中国物理快报, 2021, 38(4): 45204-.
[7]
. [J]. 中国物理快报, 2020, 37(8): 85201-.
[8]
. [J]. 中国物理快报, 2019, 36(8): 85201-.
[9]
. [J]. 中国物理快报, 2019, 36(4): 45201-.
[10]
. [J]. 中国物理快报, 2018, 35(10): 105201-.
[11]
. [J]. 中国物理快报, 2018, 35(6): 65201-.
[12]
. [J]. 中国物理快报, 2018, 35(2): 25201-.
[13]
. [J]. 中国物理快报, 2017, 34(9): 95201-.
[14]
. [J]. 中国物理快报, 2017, 34(8): 85202-.
[15]
. [J]. 中国物理快报, 2016, 33(11): 115202-115202.