1Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 2Department of Material Science and Engineering, the University of Texas at Dallas, Richardson 75080, USA
Abstract:We study the electronic and magnetic properties of an oxygen-deficient perovskite Ca$_{2}$Mn$_{2}$O$_{5}$ based on the first principle calculations. The calculations show that the ground state of Ca$_{2}$Mn$_{2}$O$_{5}$ is a D-type anti-ferromagnetic structure with the anti-ferromagnetic spin coupling along the $c$-direction. The corresponding electronic structure of the D-type state is investigated, and the results display that Ca$_{2}$Mn$_{2}$O$_{5}$ is an insulator with an indirect energy gap of $\sim$2.08 eV. By the partial density-of-state analysis, the valence band maximum is mainly contributed to by the O-2$p$ orbitals and the conduction band minimum is contributed to by the O-2$p$ and Mn-3$d$ orbitals. Due to the Coulomb repulsion interaction between electrons, the density of state of Mn-3$d$ is pulled to $-$6–$-$4.5 eV.