Proof of Security of a Semi-Device-Independent Quantum Key Distribution Protocol
Peng Xu** , Wan-Su Bao, Hong-Wei Li, Yang Wang, Hai-Ze Bao
The PLA Information Engineering University, Zhengzhou 450001
Abstract :Semi-device-independent quantum key distribution (SDI-QKD) has been proposed by applying the quantum dimension correlation, and the security relies on the violation of quantum dimension witness inequalities. We prove the security of the SDI-QKD protocol under the depolarization channel by considering the quantum dimension witness inequalities and minimum entropy and the specific process of the QKD protocol, combining with a four-quantum-state preparation and three measurement bases. We also provide the relationship between the dimension witness value, the error rate and the security key rate by the numerical simulation.
收稿日期: 2016-10-09
出版日期: 2017-01-25
:
03.67.Dd
(Quantum cryptography and communication security)
03.67.Hk
(Quantum communication)
[1] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) p 175 [2] Shor P and Preskill J 2000 Phys. Rev. Lett. 85 441 [3] Kraus B, Gisin N and Renner R 2005 Phys. Rev. Lett. 95 080501 [4] Renner R 2005 Zürich: ETH [5] Renner R, Gisin N and Kraus B 2005 Phys. Rev. A 72 012332 [6] Wang S, Yin Z Q 2015 Nat. Photon. 9 832 [7] Wang C, Song X T 2015 Phys. Rev. Lett. 115 160502 [8] Wang S, Chen W 2012 Opt. Lett. 37 1008 [9] Wang S, Chen W 2014 Opt. Express 22 21739 [10] Wang S, Chen W 2010 Opt. Lett. 35 2454 [11] Su X, Wang Y 2016 Opt. Lett. 41 5596 [12] Li F Y, Yin Z Q 2014 Chin. Phys. Lett. 31 070302 [13] Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press) [14] Pearle P M 1970 Phys. Rev. D 2 1418 [15] Pironio S, Acín A, Brunner N et al 2009 New J. Phys. 11 045021 [16] Gallego R, Brunner N, Hadley C et al 2010 Phys. Rev. Lett. 105 230501 [17] Pawłowski M and Brunner N 2011 Phys. Rev. A 84 010302 [18] Nayak A 1999 In Proceedings of 40th IEEE FOCS [C] p 369 [19] Li H W, Yin Z Q, Wu Y C et al 2011 Phys. Rev. A 84 034301 [20] Li H W, Pawłowski M, Yin Z Q et al 2012 Phys. Rev. A 85 052308 [21] Li H W, Mironowicz P, Pawłowski M et al 2013 Phys. Rev. A 87 020302(R) [22] Wang Y 2014 Chin. Phys. B 23 080303 [23] Konig R, Renner R and Schaffner C 2009 IEEE Trans. Inf. Theory 55 4337 [24] Devetak I and Winter A 2005 Proc. R. Soc. A: Math. Phys. Eng. Sci. 461 207 [25] Levenberg K 1944 Q. Appl. Math. 2 164 [26] Li H W, Yin Z Q, Pawłowski M et al 2015 Phys. Rev. A 91 032305
[1]
. [J]. 中国物理快报, 2022, 39(7): 70301-070301.
[2]
. [J]. 中国物理快报, 2022, 39(7): 70302-.
[3]
. [J]. 中国物理快报, 2022, 39(7): 70303-.
[4]
. [J]. 中国物理快报, 2021, 38(4): 40301-.
[5]
. [J]. 中国物理快报, 2020, 37(5): 50303-.
[6]
. [J]. 中国物理快报, 2019, 36(10): 100302-.
[7]
. [J]. 中国物理快报, 2019, 36(7): 70301-.
[8]
. [J]. 中国物理快报, 2019, 36(4): 40301-.
[9]
. [J]. 中国物理快报, 2019, 36(3): 30301-.
[10]
. [J]. 中国物理快报, 2018, 35(9): 90302-.
[11]
. [J]. 中国物理快报, 2017, 34(12): 120301-.
[12]
. [J]. 中国物理快报, 2017, 34(9): 90302-090302.
[13]
. [J]. 中国物理快报, 2017, 34(8): 80301-.
[14]
. [J]. 中国物理快报, 2017, 34(8): 80302-.
[15]
. [J]. 中国物理快报, 2017, 34(4): 40301-040301.