Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies
ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan, HUANG Xiao-Yan, ZHANG Xiao, XU Shi-Lin, ZHANG Hui-Yun**
Qingdao Key Laboratory of Terahertz Technology, College of Electronic Communication and Physics, Shandong University of Science and Technology, Qingdao 266510
Abstract :A graphene-based tunable dual-band metamaterial absorber which is polarization insensitive is numerically proposed at mid-infrared frequencies. In numerical simulation the metamaterial absorber exhibits two absorption peaks at the resonance wavelengths of 6.246 μm and 6.837 μm when the Fermi level of graphene is fixed at 0.6 eV. Absorption spectra at different Fermi levels of graphene are displayed and tuning functions are discussed in detail. Both the resonance wavelengths of the absorber blue shift with the increase in Fermi level of graphene. Moreover, the surface current distributions on the gold resonator and ground plane at the two resonance wavelengths are simulated to deeply understand the physical mechanism of resonance absorption.
收稿日期: 2015-01-28
出版日期: 2015-06-30
:
81.05.ue
(Graphene)
78.67.Pt
(Multilayers; superlattices; photonic structures; metamaterials)
75.40.Mg
(Numerical simulation studies)
引用本文:
. [J]. 中国物理快报, 2015, 32(06): 68101-068101.
ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan, HUANG Xiao-Yan, ZHANG Xiao, XU Shi-Lin, ZHANG Hui-Yun. Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies. Chin. Phys. Lett., 2015, 32(06): 68101-068101.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/6/068101
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I06/68101
[1] Smith D R, Pendry J B and Wiltshire M C K 2004 Science 305 788 [2] Fang N and Zhang X 2003 Appl. Phys. Lett. 82 161 [3] Zhu J and Eleftheriades G V 2009 IEEE Antennas Wireless Propag. Lett. 8 295 [4] Gil I, Martin F, Rottenberg X and De Raedt W 2007 Electron. Lett. 43 1153 [5] Chen H, Wu B I, Zhang B and Kong J A 2007 Phys. Rev. Lett. 99 063903 [6] Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy H I, Fan K, Zhang X, Padilla W J and Averitt R D 2008 Phys. Rev. B 78 241103 [7] Chen H T 2012 Opt. Express 20 7165 [8] Huang L, Chowdhury D R, Ramani S, Reuten M T, Luo S N, Taylor A J and Chen H T 2012 Opt. Lett. 37 154 [9] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402 [10] Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D and Padilla W J 2008 Opt. Express 16 7181 [11] Shrekenhamer D, Chen W C and Padilla W J 2013 Phys. Rev. Lett. 110 177403 [12] Wen Q Y, Zhang H W, Xie Y S, Yang Q H and Liu Y L 2009 Appl. Phys. Lett. 95 241111 [13] Huang L and Chen H 2011 Prog. Electromagn. Res. 113 103 [14] Yang Z, Gao R, Hu N, Chai J, Cheng Y, Zhang L, Wei H, Kong E S and Zhang Y 2012 Nano-Micro Lett. 4 1 [15] Yu Z H Tian J R and Song Y R 2014 Chin. Phys. B 23 094206 [16] Lin H, Xu D, Pantoja M F, Garcia S G and Yang H L 2014 Chin. Phys. B 23 094203 [17] Chen Y Q 2014 Chin. Phys. Lett. 31 057802 [18] Sattari F and Faizabadi E 2013 Chin. Phys. Lett. 30 097201 [19] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [20] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620 [21] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351 [22] Fallahazad B, Kim S, Colombo L and Tutuc E 2010 Appl. Phys. Lett. 97 123105 [23] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P and Xia F 2012 Nat. Nanotechnol. 7 330 [24] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630 [25] Jung I, Dikin D A, Piner R D and Ruoff R S 2008 Nano Lett. 8 4283 [26] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenovi? M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, De Abajo F J G, Hillenbrand R and Koppens F H 2012 Nature 487 77 [27] Alaee R, Farhat M, Rockstuhl C and Lederer F 2012 Opt. Express 20 28017 [28] Andryieuski A and Lavrinenko A V 2013 Opt. Express 21 9144 [29] Zhang Y, Feng Y, Zhu B, Zhao J and Jiang T 2014 Opt. Express 22 22743 [30] Hanson G W 2008 J. Appl. Phys. 103 064302
[1]
. [J]. 中国物理快报, 2022, 39(4): 47403-.
[2]
. [J]. 中国物理快报, 2022, 39(3): 37301-.
[3]
. [J]. 中国物理快报, 2020, 37(11): 116101-.
[4]
. [J]. 中国物理快报, 2020, 37(10): 108101-.
[5]
. [J]. 中国物理快报, 2020, 37(9): 94701-.
[6]
. [J]. 中国物理快报, 2018, 35(3): 38102-.
[7]
. [J]. 中国物理快报, 2017, 34(10): 106801-.
[8]
. [J]. 中国物理快报, 2017, 34(10): 107801-.
[9]
. [J]. 中国物理快报, 2015, 32(5): 58101-058101.
[10]
. [J]. 中国物理快报, 2015, 32(02): 26102-026102.
[11]
. [J]. 中国物理快报, 2014, 31(07): 78104-078104.
[12]
. [J]. 中国物理快报, 2014, 31(06): 67202-067202.
[13]
. [J]. 中国物理快报, 2014, 31(05): 57802-057802.
[14]
. [J]. 中国物理快报, 2014, 31(03): 37401-037401.
[15]
. [J]. 中国物理快报, 2013, 30(12): 126201-126201.