Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers
Tatnatchai Suwannasit1 , Rassmidara Hoonsawat1 , I-Ming Tang1,3 , Bumned Soodchomshom2**
1 Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand2 Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand3 Department of Material Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
Abstract :The Josephson currents through real vector potential (RVP) and pseudo vector potential (PVP) barriers in graphene are investigated. In graphene, the pseudo vector potential may be caused by a local strain. The comparison of supercurrents induced by the two type-barriers is focused. As a result, we find that not only will the RVP induce a transition Josephson current from the 0→π state but also causes the difference in the phases of the order parameters of the two superconducting graphene layers to shift from φ→ 2φ . The critical current is PVP-independent around the neutrality point while it strongly depends on the RVP. The vector potential dependence of critical current is found to be perfectly linear for both PVP and RVP barriers.
收稿日期: 2013-08-15
出版日期: 2014-02-28
:
74.50.+r
(Tunneling phenomena; Josephson effects)
81.05.ue
(Graphene)
07.10.Pz
(Instruments for strain, force, and torque)
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, I V and Firsov A A 2004 Science 306 666 [2] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807 [3] Wang Y, Wong D, Shytov A V, Brar V W, Choi S, Wu Q, Tsai H Z, Regan W, Zettl A, Kawakami R K, Louie S G, Levitov L S and Crommie M F 2013 Science 340 734 [4] Zhai F, Zhao X, Chang K and Xu H Q 2010 Phys. Rev. B 82 115442 [5] Fujita T, Jalil M B A and Tan S G 2010 Appl. Phys. Lett. 97 043508 [6] Soodchomshom B and Chantngarm P 2011 J. Supercond. Novel Magn. 24 1885 [7] Niu Z P 2012 J. Appl. Phys. 111 103712 [8] Pereira V M and Castro Neto A H 2009 Phys. Rev. Lett. 103 046801 [9] Katsnelson M I and Novoselov K S 2007 Solid State Commun. 143 3 [10] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H and Crommie M F 2010 Science 329 544 [11] Ghosh S and Sharma M 2009 J. Phys.: Condens. Matter 21 292204 [12] Soodchomshom B 2011 Physica E 44 579 [13] Heersche H B, Jarillo-Heerero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56 [14] Borzenets I V, Coskun U C, Jones S J and Finkelstein G 2011 Phys. Rev. Lett. 107 137005 [15] Dirks T, Hughes T L, Lal S, Uchoa B, Chen Y F, Chialvo C, Goldbart P M and Mason N 2011 Nat. Phys. 7 386 [16] Jeong D, Choi J H, Lee G H, Jo S, Doh Y J and Lee H J 2011 Phys. Rev. B 83 094503 [17] Voutilainen J, Fay A, H ?kkinen P, Viljas J K, Heikkil? T T and Hakonen P J 2011 Phys. Rev. B 84 045419 [18] Tsumura K, Ohsugi M, Hayashi T, Watanabe E, Tsuya D, Nomura S and Takayanagi H 2012 J. Phys.: Conf. Ser. 400 042064 [19] Girit C, Bouchiat V, Naaman O, Zhang Y, Crommie M F, Zettl A and Siddiqi I 2009 Nano Lett. 9 198 [20] Halterman K, Valls O T and Alidoust M 2013 Phys. Rev. Lett. 111 046602 [21] Borzenets I V, Coskun U C, Mebrahtu H T, Bomze Yu V, Smirnov A I and Finkelstein G 2013 Phys. Rev. Lett. 111 027001 [22] Allain A, Han Z and Bouchiat V 2012 Nat. Mater. 11 590 [23] Li W X, Xu X, Chen Q H, Zhang Y, Zhou S H, Zeng R and Dou S X 2011 Acta Mater. 59 7268 [24] Tarasov M, Lindvall N, Kuzmin L and Yurgens A 2011 JETP Lett. 94 329 [25] Soodchomshom B 2012 J. Supercond. Novel Magn. 25 405 [26] Linder J and Sudb? A 2008 Phys. Rev. B 77 064507 [27] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007 [28] Maiti M and Sengupta K 2007 Phys. Rev. B 76 054513 [29] Linder J, Yokoyama T, Huertas-Hernando D and Sudb? A 2008 Phys. Rev. Lett. 100 187004 [30] Suwannasit T, Tang I M, Hoonsawat R and Soodchomshom B 2011 J. Low Temp. Phys. 165 15 [31] Goudarzi H, Khezerlou M and Dezhaloud T 2013 Physica C 489 8 [32] Josephson B D 1962 Phys. Lett. 1 251 [33] Beenakker C W J 2008 Rev. Mod. Phys. 80 1337 [34] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [35] Pereira V M, Castro Neto A H and Peres N M R 2009 Phys. Rev. B 80 045401 [36] Titov M and Beenakker C W J 2006 Phys. Rev. B 74 041401(R) [37] Thiên-Nga L, Hernadi K, Ljubovi? E, Garaj S and Forró L 2002 Nano Lett. 2 1349 [38] Mohiudddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K and Ferrari A C 2009 Phys. Rev. B 79 205433
[1]
. [J]. 中国物理快报, 2022, 39(7): 77402-.
[2]
. [J]. 中国物理快报, 2021, 38(6): 60301-.
[3]
. [J]. 中国物理快报, 2021, 38(3): 37402-.
[4]
. [J]. 中国物理快报, 2020, 37(1): 17401-.
[5]
. [J]. 中国物理快报, 2019, 36(12): 124204-.
[6]
. [J]. 中国物理快报, 2019, 36(4): 47401-.
[7]
. [J]. 中国物理快报, 2017, 34(7): 70303-.
[8]
. [J]. 中国物理快报, 2017, 34(7): 77403-.
[9]
. [J]. 中国物理快报, 2016, 33(11): 117401-117401.
[10]
. [J]. 中国物理快报, 2016, 33(01): 17401-017401.
[11]
. [J]. 中国物理快报, 2015, 32(11): 117301-117301.
[12]
. [J]. 中国物理快报, 2015, 32(09): 97401-097401.
[13]
. [J]. 中国物理快报, 2015, 32(4): 47402-047402.
[14]
. [J]. 中国物理快报, 2013, 30(7): 77404-077404.
[15]
Hamidreza Emamipour1* , Jafar Emamipour2 . Zero-Bias Conductance versus Potential Strength of Interface in Ferromagnetic Superconductors [J]. 中国物理快报, 2012, 29(3): 37401-037401.