Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas
SUN Tian-Tian1 , CHEN Shao-Yong1,2** , WANG Zhan-Hui2 , PENG Xiao-Dong2 , HUANG Jie1 , MOU Mao-Lin1 , TANG Chang-Jian1
1 College of Physical Science and Technology, Sichuan University, Chengdu 6100642 Southwestern Institute of Physics, Chengdu 610041
Abstract :A critical physical model, based on the ion temperature gradient (ITG) mode and the trapped electron mode (TEM), trying to explain the spatio-temporal dynamics of anomalous particle convection reversal (i.e., the particle convective flux reverses from inward to outward), is developed numerically. The dependence of density peaking and profile shape on the particle convection is studied. Only the inward pinch could lead to the increase of the density peaking. The validation of the critical model is also analyzed. A comparison of the estimates calculated by the model and the experimental results from the Tore Supra tokamak shows that they are qualitatively both consistent.
出版日期: 2015-02-26
引用本文:
. [J]. 中国物理快报, 2015, 32(03): 35201-035201.
SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas. Chin. Phys. Lett., 2015, 32(03): 35201-035201.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/32/3/035201
或
https://cpl.iphy.ac.cn/CN/Y2015/V32/I03/35201
[1] Coppi B and Spight C 1978 Phys. Rev. Lett. 41 551 [2] Tang W M, Rewoldt G and Chen L 1986 Phys. Fluids 29 3715 [3] Yan'kov V V 1994 J. Exp. Theor. Phys. Lett. 60 171 [4] Baker D R and Rosenbluth M N 1998 Phys. Plasmas 5 2936 [5] Mahdavi M A, Osborne T H, Leonard A W et al 2002 Nucl. Fusion 42 52 [6] Angioni C, Peeters A G, Pereverzev G V, Ryter F, Tardini G and Team A U 2003 Phys. Plasmas 10 3225 [7] Garbet X, Garzotti L, Mantica P, Nordman H, Valovic M, Weisen H and Angioni C 2003 Phys. Rev. Lett. 91 035001 [8] Zhong W L, Zou X L, Bourdelle C, Song S D, Artaud J F, Aniel T and Duan X R 2013 Phys. Rev. Lett. 111 265001 [9] Wang Z H, Diamond P H, Gürcan ? D, Garbet X and Wang X G 2011 Nucl. Fusion 51 073009 [10] Kalupin D, Tokar M Z, Unterberg B, Loozen X and Pilipenko D 2005 Nucl. Fusion 45 468 [11] Miki K, Diamond P H, Guürcan O D, Tynan G R, Estrada T, Schmitz L and Xu G S 2012 Phys. Plasmas 19 092306 [12] Xu X Q, Umansky M V, Dudson B and Snyder P B 2008 Commun. Comput. Phys. 4 949
[1]
. [J]. 中国物理快报, 2022, 39(7): 75201-.
[2]
. [J]. 中国物理快报, 2021, 38(8): 85201-.
[3]
. [J]. 中国物理快报, 2021, 38(4): 45203-.
[4]
. [J]. 中国物理快报, 2017, 34(2): 24204-024204.
[5]
. [J]. 中国物理快报, 2016, 33(01): 15203-015203.
[6]
. [J]. 中国物理快报, 2015, 32(12): 125201-125201.
[7]
. [J]. 中国物理快报, 2015, 32(10): 105201-105201.
[8]
. [J]. 中国物理快报, 2015, 32(09): 94501-094501.
[9]
. [J]. 中国物理快报, 2015, 32(5): 54209-054209.
[10]
. [J]. 中国物理快报, 2014, 31(11): 114202-114202.
[11]
. [J]. 中国物理快报, 2014, 31(09): 95205-095205.
[12]
. [J]. 中国物理快报, 2014, 31(03): 35202-035202.
[13]
. [J]. Chin. Phys. Lett., 2013, 30(3): 34208-034208.
[14]
. [J]. 中国物理快报, 2012, 29(10): 104210-104210.
[15]
. [J]. 中国物理快报, 2012, 29(9): 95201-095201.