ZnO/Fe2O3 nanorod arrays (NRs) and ZnO/NiO nanotube arrays (NTs) are synthesized on Si substrates by using a facile two-step growth method. The absorption spectrum of the ZnO/Fe2O3 NRs shows significant absorption in the visible light region. Their photocatalytic properties are evaluated by the degradation of methylene blue (MB). It is found that the ZnO/Fe2O3 NRs display higher photocatalytic activity than the ZnO/NiO nanotube arrays under UV-vis light irradiation. This is most likely attributed to an effective separation of photoelectrons and holes.
ZnO/Fe2O3 nanorod arrays (NRs) and ZnO/NiO nanotube arrays (NTs) are synthesized on Si substrates by using a facile two-step growth method. The absorption spectrum of the ZnO/Fe2O3 NRs shows significant absorption in the visible light region. Their photocatalytic properties are evaluated by the degradation of methylene blue (MB). It is found that the ZnO/Fe2O3 NRs display higher photocatalytic activity than the ZnO/NiO nanotube arrays under UV-vis light irradiation. This is most likely attributed to an effective separation of photoelectrons and holes.
(Liquid phase epitaxy; deposition from liquid phases (melts, solutions, And surface layers on liquids))
引用本文:
CUI Yin-Fang, WANG Cong**, WU Su-Juan, LIU Yu, WANG Tian-Min. Preparation and Photocatalytic Activity of ZnO/Fe2O3 Nanorod Arrays and ZnO/NiO Nanotube Arrays[J]. 中国物理快报, 2012, 29(3): 37201-037201.
CUI Yin-Fang, WANG Cong, WU Su-Juan, LIU Yu, WANG Tian-Min. Preparation and Photocatalytic Activity of ZnO/Fe2O3 Nanorod Arrays and ZnO/NiO Nanotube Arrays. Chin. Phys. Lett., 2012, 29(3): 37201-037201.
[1] Mills A and Hunte S L 1997 J. Photochem. Photobiol. A: Chem. 108 1 [2] Hara M, Hasei H, Yashima M, Ikeda S, Takata T, Kondo J N and Domen K 2000 Appl. Catal. A: General 190 35 [3] Zheng L R, Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M and Zhu J F 2009 Inorg. Chem. 48 1819 [4] Pal B, Sharon M and Nogami G 1999 Mater. Chem. Phys. 59 254 [5] Hameed A, Montini T, Gonbac V and Fornasiero P 2009 Photochem. Photobiol. Sci. 8 677 [6] Bessekhouad Y, Robert D and Weber J V 2005 Catal. Today 101 315 [7] Shchukin D G and Caruso R A 2004 Chem. Mater. 16 2287 [8] Gurr J R, Wang A S, Chen C H and Jan K Y 2005 Toxicology 213 66 [9] Anpo M and Takeuchi M 2003 J. Catal. 216 505 [10] Li Y Z, Kunitake T and Fujikawa S 2006 J. Phys. Chem. B 110 13000 [11] Kuo T J, Lin C N, Kuo C L and Huang M H 2007 Chem. Mater. 19 5143 [12] Yu H D, Zhang Z P, Han M Y, Hao X T and Zhu F R 2005 J. Am. Chem. Soc. 127 2378 [13] Nishio J, Masahiro T, Znad H T and Kawase Y 2006 J. Haza. Mater. 138 106 [14] Wang Y X, Li X Y, Lu G and Chen G H 2008 J. Phys. Chem. C 112 7332 [15] Weintraub B, Deng Y L and Wang Z L 2007 J. Phys. Chem. C 111 10162 [16] Vayssieres L 2003 Adv. Mater. 15 464 [17] Vayssieres L, Kei K, Lindquist S E and Hagfeldt A 2001 J. Phys. Chem. B 105 3350 [18] Zhu C L, Chen Y J, Wang R X, Wang L J, Cao M S and Shi X L 2009 Sensor. Actuat. B 140 185 [19] Ohta H, Hirano M, Nakahare K, Maruta H, Tanabe T, Kamiya M, Kamiya T and Hosono H 2003 Appl. Phys. Lett. 83 1029 Miller E L, Paluselli D, Marsen B and Rocheleau R E 2004 Thin Solid Film 466 307 [20] Chen H L, Lu Y M and Hwang W S 2005 Surf. Coat. Technol. 198 138 [21] Tahir A A, Upul Wijayantha K G, Saremi Yarahmadi S, Mazhar M and Mckee V 2009 Chem. Mater. 21 3763 [22] Wang Z, Qian X F, Yin J and Zhu Z K 2004 Langmuir 20 3441 [23] Hern ndez A, Maya L, Sánchez Mora E and Sánchez E M 2007 J. Sol Gel. Sci. Technol. 42 71 [24] Mohapatra S K, Banerjee S and Misra M 2008 Nanotechnology 19 315601 [25] Chen S F, Zhao W, Liu W and Zhang S J 2009 J. Sol. Gel. Sci. Technol. 50 387 [26] Villaseñor J, Reyes P and Pecchi G 1998 J. Chem. Technol. Biotechnol. 72 105 [27] Adler D and Feinlieb J 1970 Phys. Rev. B 2 3112