MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties
CAO Wen-Qiang1,2,3, LU Ming-Ming1, WEN Bo1, CHEN Yuan-Lu1, LI Hong-Bo1, YUAN Jie3**, CAO Mao-Sheng1**
1School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 2School of EMPS, University College Dublin, Dublin 4, Ireland 3School of Information Engineering, Minzu University of China, Beijing 100081
MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties
CAO Wen-Qiang1,2,3, LU Ming-Ming1, WEN Bo1, CHEN Yuan-Lu1, LI Hong-Bo1, YUAN Jie3**, CAO Mao-Sheng1**
1School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 2School of EMPS, University College Dublin, Dublin 4, Ireland 3School of Information Engineering, Minzu University of China, Beijing 100081
摘要We synthesize composite systems of multi-wall carbon nanotubes (MWCNTs)/SiO2 by using the sol−gel method. The dielectric properties of the systems with different-concentration MWCNTs are studied. In our MWCNTs/SiO2 inorganic systems, the twin−percolation phenomenon exists when the concentrations of MWCNTs are 5–10% and 15–20%. The permittivity and conductivity have jumping changes. The twin−percolation phenomenon is attributed to the special transfer mechanism of MWCNTs in the system, determined by hopping and migrating electrons. Variations of dielectric properties and conductance of the MWCNTs/SiO2 systems are conformed to the percolation theory. The special percolation phenomenon and electric properties of MWCNTs/SiO2 can help us comprehend the conductivity mechanism of the MWCNTs/SiO2 systems effectively, and promote the development of a high performance function composite system.
Abstract:We synthesize composite systems of multi-wall carbon nanotubes (MWCNTs)/SiO2 by using the sol−gel method. The dielectric properties of the systems with different-concentration MWCNTs are studied. In our MWCNTs/SiO2 inorganic systems, the twin−percolation phenomenon exists when the concentrations of MWCNTs are 5–10% and 15–20%. The permittivity and conductivity have jumping changes. The twin−percolation phenomenon is attributed to the special transfer mechanism of MWCNTs in the system, determined by hopping and migrating electrons. Variations of dielectric properties and conductance of the MWCNTs/SiO2 systems are conformed to the percolation theory. The special percolation phenomenon and electric properties of MWCNTs/SiO2 can help us comprehend the conductivity mechanism of the MWCNTs/SiO2 systems effectively, and promote the development of a high performance function composite system.
[1] Wang G S, Deng Y and Guo L 2010 Chem. Eur. J. 16 10220
[2] Cao M S, Shi X L, Fang X Y, Jin H B, Hou Z L, Zhou W and Chen Y J 2007 Appl. Phys. Lett. 91 203110
[3] Cao M S, Zhou W, Shi X L and Chen Y J 2007 Appl. Phys. Lett. 91 021912
[4] Che R C, Zhi C Y, Liang C Y and Zhou X G 2006 Appl. Phys. Lett. 88 033105
[5] Guo L, Ji Y L, Xu H B, Simon P and Wu Z Y 2002 J. Am. Chem. Soc. 124 14864
[6] Chen W, Wang N, Liu L, Cui Y R, Cao X, Chen Q J and Guo L 2009 Nanotechnology 20 445601
[7] Shi X L, Cao M S, Zhao Y N, Song W L and Rong J L 2008 Sci. Chin. E 51 1433
[8] Shi X L, Cao M S, Yuan J and Fang X Y 2009 Appl. Phys. Lett. 95 163108
[9] Shi X L, Cao M S, Yuan J, Zhao Q L, Kang Y Q, Fang X Y and Chen Y J 2008 Appl. Phys. Lett. 93 183118
[10] Shi X L, Cao M S, Fang X Y, Yuan J, Kang Y Q and Song W L 2008 Appl. Phys. Lett. 93 223112
[11] Cao M S, Song W L, Hou Z L, Wen B and Yuan J 2010 Carbon 48 788
[12] Song W L, Cao M S, Hou Z L, Fang X Y, Shi X L and Yuan J 2009 Appl. Phys. Lett. 94 233110
[13] Song W L, Cao M S, Hou Z L, Yuan J and Fang X Y 2009 Scripta Mater. 61 201
[14] Che R C, Peng L M, Duan X F, Chen Q and Liang X L 2004 Adv. Mater. 16 401
[15] Yuan J K, Yao S H, Dang Z M, Sylvestre A, Genestoux M and Bai J B 2011 J. Phys. Chem. C 115 5515
[16] Dang Z M, Jiang M J, Xie D, Yao S H, Zhang L Q and Bai J B 2008 J. Appl. Phys. 104 024114
[17] Jiang M J, Dang Z M, Yao S H and Bai J B 2008 Chem. Phys. Lett. 457 352
[18] Dang Z M, Wang L and Zhang L P 2006 J. Nanomater. 83583
[19] Jiang M J, Dang Z M and Xu H P 2007 Eur. Polym. J. 43 4924
[20] Yao S H, Dang Z M, Jiang M J, Xu H P and Bai J B 2007 Appl. Phys. Lett. 91 212901
[21] Dang Z M, Wang L, Yin Y, Zhang Q and Lei Q Q 2007 Adv. Mater. 19 852
[22] Jiang M J, Dang Z M and Xu H P 2007 Appl. Phys. Lett. 90 042914
[23] Wang L and Dang Z M 2005 Appl. Phys. Lett. 87 042903
[24] Dang Z M, Fan L Z, Shen Y and Nan C W 2003 Mater. Sci. Eng. B 103 140
[25] Deng Y, Li N, Wang Y, Zhang Z W, Dang Y and Liang J Y 2010 Mater. Lett. 64 528
[26] Deng Y, Zhang J Y, Xiang Y, Wang G S and Xu H B 2009 J. Mater. Chem. 19 2058
[27] Wang G S, Deng Y, Xiang Y and Guo L 2008 Adv. Funct. Mater. 18 2584
[28] Deng Y, Wang G S, Li N and Guo L 2009 J. Lumin. 129 55
[29] Skakalova V, Kaiser A B, Woo Y S and Roth S 2006 Phys. Rev. B 74 085403
[30] Kaiser A B 2001 Adv. Mater. 13 927
[31] Kaiser A B 2001 Rep. Prog. Phys. 64 1
[32] Kaiser A B, Dusberg G and Roth S 1998 Phys. Rev. B 57 1418