摘要Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect.
Abstract:Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect.
[1] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[2] Ma H, Qu S B, Xu Z and Wang J F 2008 Phys. Rev. E 78 036608
[3] Hu J, Zhou X M and Hu G K 2009 Appl. Phys. Lett. 95 011107
[4] Jiang W X, Chin J Y, Li Z, Cheng Q, Liu R P and Cui T J 2008 Phys. Rev. E 77 066607
[5] Ma H, Qu S B, Xu Z and Wang J F 2009 Appl. Phys. Lett. 94 103501
[6] Ma H, Qu S B, Xu Z, Zhang J Q and Wang J F 2009 Chin. Phys. B 18 1850
[7] Huang Y, Feng Y J and Jiang T 2007 Opt. Express 15 11133
[8] Popa B –I and Cummer S A 2009 Phys. Rev. A 79 023806
[9] Zhang J J, Huangfu J T, Luo Y, Chen H S, Kong J A and Wu B I 2008 Phys. Rev. B 77 035116
[10] Zhang P, Jin Y and He S L 2008 Appl. Phys. Lett. 93 243502
[11] Wang X H, Qu S B, Xia S, Wang B K, Xu Z, Ma H, Wang J F, Gu C, Wu X, Lu L and Zhou H 2010 Photon. Nanostruc. Fundam. Appl. 8 205
[12] Wu Q, Zhang K, Meng F Y, Fu J H and Li L W 2010 J. Appl. Phys. 107 09A950
[13] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[14] Chen H Y, Liang Z X, Yao P J, Jiang X Y, Ma H R and Chan C T 2007 Phys. Rev. B 76 241104
[15] Gao Y, Huang J P and Yu K W 2009 J. Appl. Phys. 105 124505
[16] Alù A and Engheta N 2005 Phys. Rev. E 72 016623
[17] Alù A and Engheta N 2007 Opt. Express 15 3318
[18] Silveirinha M G, Alù A and Engheta N 2008 Phys. Rev. B 78 205109
[19] Silveirinha M G, Alù A and Engheta N 2007 Phys. Rev. E 75 036603
[20] Edwards B, Alù A, Silveirinha M G and Engheta N 2009 Phys. Rev. Lett. 103 153901
[21] Liu X, Li C, Yao K, Meng X K, Feng W, Wu B H and Li F 2009 Appl. Phys. Lett. 95 191107
[22] Alitalo P, Bongard F, Zürcher J -F, Mosig J and Tretyakov S 2009 Appl. Phys. Lett. 94 014103
[23] Alitalo P, Luukkonen O, Mosig J and Tretyakov S 2009 Microwave Opt. Technol. Lett. 51 1627
[24] Alitalo P, Ranvier S, Vehmas J and Tretyakov S 2008 Metamaterials 2 206
[25] Tretyakov S, Alitalo P, Luukkonen O and Simovski C 2009 Phys. Rev. Lett. 103 103905