Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods
Wei-Na Cui1,2, Hong-Xia Li1, Min Sun1, Yong-Yuan Zhu2**
1Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 2Key Laboratory of Modern Acoustics, National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093
Abstract:We study the coupling of cutoff modes in a chain of metallic nanorods embedded in a Kerr nonlinear optical medium with strong near-field interactions analytically. Based on a quasidiscreteness approach, we derive a system of two coupled nonlinear Schr?dinger equations governing the evolution of the envelopes of these modes. It is shown that this system supports a variety of subwavelength plasmonic lattice vector solitons of the bright-bright, bright-dark, dark-bright, and dark-dark type through a cross-phase modulation. It is also shown that the existence of different solitons depends strongly on the gap width scaled for the rod radius and the type of nonlinearity of the embedded medium.