Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing
CHEN Liang1**, WAN Wei1,2, XIE Yi1,2, ZHOU Fei1, FENG Mang1**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing
CHEN Liang1**, WAN Wei1,2, XIE Yi1,2, ZHOU Fei1, FENG Mang1**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, and Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
摘要In this paper we try to develop a scalable surface-electrode architecture for ion trap quantum information processing. The confinement of the ions by the rf pseudopotential and the movement of the ions by changing the rf pseudopotential are investigated by numerical simulation. Particular concern is paid to the +-shaped junction, which is the connection of different components of the architecture, and also on the place which yields heat and escaping ions. We show the feasibility of fabricating and operating on the architecture for quantum information processing with currently available technology.
Abstract:In this paper we try to develop a scalable surface-electrode architecture for ion trap quantum information processing. The confinement of the ions by the rf pseudopotential and the movement of the ions by changing the rf pseudopotential are investigated by numerical simulation. Particular concern is paid to the +-shaped junction, which is the connection of different components of the architecture, and also on the place which yields heat and escaping ions. We show the feasibility of fabricating and operating on the architecture for quantum information processing with currently available technology.
[1] Gershenfeld N A and Chuang I L 1997 Science 275 350
[2] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[3] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[4] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[5] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[6] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R -S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[7] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[8] DiVincenzo D P 2000 Fortschr. Phys. 48 771
[9] Wineland D, Bergquist J, Itano W and Drullinger R 1980 Opt. Lett. 5 245
[10] Nagourney W, Sandberg J and Dehmelt H 1986 Phys. Rev. Lett. 56 2797
[11] Bollinger J J, Heinzen D J, Itano W M, Gilbert S and Wineland D J 1991 IEEE Trans. Instrum. Meas. 40 126
[12] Diedrich F, Peik E, Chen J M, Quint W and Walther H 1987 Phys. Rev. Lett. 59 2931
[13] Wineland D J, Monroe C, Itano W M, Leibfried D, King B E and Meekhof D M 1998 J. Res. Natl. Inst. Stand. Technol. 103 259
[14] Steane A, Roos C F, Stevens D, Mundt A, Leibfried D, Schmidt Kaler F and Blatt R 2000 Phys. Rev. A 62 042305
[15] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[16] Rowe M A M, Ben kish A, Demarco B, Leibfried D, Meyer V, Beall J, Britton J, Hughes J, Itano W M, Jelenković B, Langer C, Rosenband T and Wineland D J 2002 Quant. Inform. Comput. 2 257
[17] Chiaverini J, Leibried D, Schaetz T, Barrett M D, Blakestad R B, Britton J, Itano W M, Jost J D, Knill E, Langer C, Ozeri R and Wineland D J 2004 Nature 432 602
[18] Barrett M D, Chiaverini J, Schaetz T, Britton J, Itano W M, Jost J D, Knill E, Langer C, Leibfried D, Ozeri R and Wineland D J 2004 Nature 429 737
[19] Schaetz T, Barrett M D, Leibfried D, Chiaverini J, Britton J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Phys. Rev. Lett. 93 040505
[20] Chiaverini J, Britton J, Leibfried D, Knill E, Barrett M D, Blakestad R B, Itano W M, Jost J D, Langer C, Ozeri R, Schaetz T and Wineland D J 2005 Science 308 997
[21] Hensinger W K, Olmschenk S, Stick D, Hucul D, Yeo M, Acton M, Deslauriers L and Monroe C 2006 Appl. Phys. Lett. 88 034101
[22] Blakestad R B, Ospelkaus C, VanDevender A P, Amini J M, Britton J, Leibfried D and Wineland D J 2009 Phys. Rev. Lett. 102 153002
[23] Labaziewicz J, Ge Y F, Antohi P, Leibrandt D, Brown K R, and Chuang I L 2008 Phys. Rev. Lett. 100 013001
[24] Amini J M, Uys H, Wesenberg J, Seidelin S, Britton J W, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P and Wineland D J 2010 New J. Phys. 12 033031
[25] Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2006 Phys. Rev. A 73 032307
[26] Zhou F, Xie Y, Xu Y Y, Li J M, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 043201
[27] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 123203
[28] Splatt F, Harlander M, Brownnutt M, Zäringer F, Blatt R and Häsel W 2009 New J. Phys. 11 103008
[29] Retzker A, Thompson R C, Segal D M and Plenio M B 2008 Phys. Rev. Lett. 101 260504
[30] Eichmann U, Bergquist J C, Bollinger J J, Gilligan J M, Itano W M, Wineland D J and Raizen M G 1993 Phys. Rev. Lett. 70 2359