摘要We report a reddish orange long-lasting phosphor of KY3F10:Sm3+ synthesized by a solid−state reaction for applications in x-ray or cathode-ray tubes. The spectrum contains a group of reddish orange emission lines originating from 4G5/2→6HJ transitions of Sm3+. The Judd–Ofelt theory is introduced to analyze the optical transitions of the Sm3+ ions. Moreover, phosphorescence characteristics are discussed. The energy charging and release processes of the phosphor are measured and the phosphorescence decay time with 10% of initial intensity is about 40.7 seconds. The order of kinetics and the activation energy are obtained according to the thermoluminescence curve. The phosphorescence mechanism is proposed based on structural analysis and thermoluminescence glow curve measurement.
Abstract:We report a reddish orange long-lasting phosphor of KY3F10:Sm3+ synthesized by a solid−state reaction for applications in x-ray or cathode-ray tubes. The spectrum contains a group of reddish orange emission lines originating from 4G5/2→6HJ transitions of Sm3+. The Judd–Ofelt theory is introduced to analyze the optical transitions of the Sm3+ ions. Moreover, phosphorescence characteristics are discussed. The energy charging and release processes of the phosphor are measured and the phosphorescence decay time with 10% of initial intensity is about 40.7 seconds. The order of kinetics and the activation energy are obtained according to the thermoluminescence curve. The phosphorescence mechanism is proposed based on structural analysis and thermoluminescence glow curve measurement.
[1] Shionoya S and Yen W M 1998 Phosphor Handbook (New York: CRC Press)
[2] Nakanishi Y et al 1981 Jpn. J. Appl. Phys. 20 2261
[3] Bhalla R J R and White E W 1970 J. Appl. Phys. 41 2267
[4] Giacomo G M di 1969 J. Electrochem. Soc. 116 313
[5] McAllister W A 1971 J. Electrochem. Soc. 118 474
[6] Struck C W et al 1992 NATO Adv. Stud. Inst. B: Phys. 301 479
[7] Yuan Z X et al 2004 J. Alloys Compd. 377 268
[8] Liu Y L et al 2005 Chem. Mater. 17 2108
[9] Schlotter P et al 1997 Appl. Phys. A: Mater. Sci. Process. 64 417
[10] Jia D et al 2002 Appl. Phys. Lett. 80 1535
[11] Chu M H et al 2010 Chin. Phys Lett. 27 047023
[12] Lei B F et al 2010 Chin. Phys Lett. 27 037201
[13] Braud A et al 2000 Phys. Rev. B 61 5280
[14] Cheng F et al 2011 Chin. Phys. Lett. 28 036106
[15] Porcher P et al 1978 J. Chem. Phys. 68 4183
[16] Chamberlain S L et al 2005 Phys. Rev. B 71 024434
[17] Chamberlain S L et al 2006 J. Phys. Chem. Solids 67 710
[18] Wells J-P R et al 1999 J. Lumin. 85 91
[19] Krumpel A H et al 2008 J. Appl. Phys. 104 073505
[20] Carnall W T et al 1968 J. Chem. Phys. 49 4412
[21] Judd B R 1962 Phys. Rev. 127 750
[22] Ofelt G S 1962 J. Chem. Phys. 37 511
[23] van Pieterson L et al 2002 Phys. Rev. B 65 045114
[24] Porcher P et al 1976 J. Chem. Phys. 65 89
[25] Nielson C W et al 1963 Spectroscopic Coefficients for the pn , dn, and f n Configurations (Cambridge: MIT Press)
[26] Chen R 1969 J. Electrochem. Soc. 116 1254
[27] Kitis G et al 1998 J. Phys. D: Appl. Phys. 31 2636
[28] Taylor G C et al 1978 J. Phys. D: Appl. Phys. 11 567
[29] Garlick G F J et al 1948 Proc. Phys. Soc. London 60 574
[30] Dorenbos P 2003 J. Phys.: Condens. Matter 15 8417
[31] Dorenbos P 2005 J. Lumin. 111 89
[32] Dorenbos P et al 2006 Appl. Phys. Lett. 89 061122
[33] Raymond S G et al 1994 Radiat. Meas. 23 195
[34] Yang B et al 1998 Phys. Rev. B 57 178
[35] Jette A N et al 1969 Phys. Rev. 184 844