Elastic Scattering Properties of Ultracold Strontium Atoms
ZHANG Ji-Cai1**, ZHU Zun-Lue1, LIU Yu-Fang1, SUN Jin-Feng1,2
1College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007 2Department of Physics, Luoyang Normal College, Luoyang 471022
Elastic Scattering Properties of Ultracold Strontium Atoms
ZHANG Ji-Cai1**, ZHU Zun-Lue1, LIU Yu-Fang1, SUN Jin-Feng1,2
1College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007 2Department of Physics, Luoyang Normal College, Luoyang 471022
摘要We investigate the elastic scattering properties of strontium atoms at ultracold temperatures. The scattering parameters, such as s-wave scattering lengths, effective ranges and p-wave scattering lengths, are calculated for all stable isotope combinations of Sr atoms by the quantal method and semiclassical method, respectively. Good agreements are obtained. The scattering parameters are very sensitive to small changes of the reduced mass. Due to the repulsive interisotope and intraisotope s-wave scattering length and large elastic cross sections, 84Sr–86Sr mixture is a good candidate to realize Bose–Bose quantum degenerate atomic gases.
Abstract:We investigate the elastic scattering properties of strontium atoms at ultracold temperatures. The scattering parameters, such as s-wave scattering lengths, effective ranges and p-wave scattering lengths, are calculated for all stable isotope combinations of Sr atoms by the quantal method and semiclassical method, respectively. Good agreements are obtained. The scattering parameters are very sensitive to small changes of the reduced mass. Due to the repulsive interisotope and intraisotope s-wave scattering length and large elastic cross sections, 84Sr–86Sr mixture is a good candidate to realize Bose–Bose quantum degenerate atomic gases.
[1] Burnett K, Julienne P S, Lett P D, Tiesinga E and Williams C J 2002 Nature 416 225
[2] Ketterle W and van Druten N J 1996 Adv. At. Mol. Opt. Phys. 37 181
[3] Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A and Inguscio M 2001 Science 294 1320
[4] Fertig C and Gibble K 2000 Phys. Rev. Lett. 85 1622
[5] Dalfovo F, Giorgini S, Pitaevkii L and Stringari S 1999 Rev. Mod. Phys. 71 463
[6] Ouerdane H and Jamieson M J 2009 Eur. Phys. J. D 53 27
[7] Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
[8] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[9] Jamieson M J and Ouerdane H 2011 Chin. Phys. Lett. 28 060308
[10] Stein A, Knöckel H and Tiemann E 2008 Phys. Rev. A 78 042508
[11] Tiesinga E, Kotochigova S and Julienne P S 2002 Phys. Rev. A 65 042722
[12] Kraft S, Vogt F, Appel O, Riehle F and Sterr U 2009 Phys. Rev. Lett. 103 130401
[13] Stellmer S, Tey M K, Huang B, Grimm R and Schreck F 2009 Phys. Rev. Lett. 103 200401
[14] Stellmer S, Tey M K, Grimm R and Schreck F 2010 Phys. Rev. A 82 041602
[15] Mickelson P G, Martinez de Escobar Y N, Yan M, DeSalvo B J and Killian T C 2010 Phys. Rev. A 81 051601
[16] DeSalvo B J, Yan M, Mickelson P G, Martinez de Escobar Y N and Killian T C 2010 Phys. Rev. Lett. 105 030402
[17] Tey M K, Stellmer S, Grimm R and Schreck F 2010 Phys. Rev. A 82 011608
[18] Steina A, Knöckel H and Tiemann E 2010 Eur. Phys. J. D 57 171
[19] Hinckelmann O and Spruch L 1971 Phys. Rev. A 3 642
[20] Gribakin G F and Flambaum V V 1993 Phys. Rev. A 48 546
[21] Flambaum V V, Gribakin G F and Harabati C 1999 Phys. Rev. A 59 1998
[22] Dickinson A S 2008 J. Phys. B 41 175302
[23] Jamieson M J, Sarbazi-Azad H, Ouerdane H, Jeung G-H, Lee Y S and Lee W C 2003 J. Phys. B 36 1085
[24] Riboli F and Modugno M 2002 Phys. Rev. A 65 063614