1Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083 2Department of Applied Physics, Hunan University, Changsha 410082 3Department of Physics, Tsinghua University, Beijing 100084
Lattice-Inversion Embedded-Atom-Method Interatomic Potentials for Group-VA Transition Metals
1Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083 2Department of Applied Physics, Hunan University, Changsha 410082 3Department of Physics, Tsinghua University, Beijing 100084
摘要The lattice-inversion embedded-atom-method (LI-EAM) interatomic potential we developed previously [J. Phys.: Condens. Matter 22 (2010) 375503] is extended to group-VA transition metals (V, Nb and Ta). It is found that considering interatomic interactions up to appropriate-distance-neighbor atoms is crucial to constructing accurate EAM potentials, especially for the prediction of surface energy. The LI-EAM interatomic potentials for group-VA transition metals are successfully built by considering interatomic interactions up to the fifth neighbor atoms. These angular-independent potentials drastically promote the accuracy of the predicted surface energies, which match the experimental results well.
Abstract:The lattice-inversion embedded-atom-method (LI-EAM) interatomic potential we developed previously [J. Phys.: Condens. Matter 22 (2010) 375503] is extended to group-VA transition metals (V, Nb and Ta). It is found that considering interatomic interactions up to appropriate-distance-neighbor atoms is crucial to constructing accurate EAM potentials, especially for the prediction of surface energy. The LI-EAM interatomic potentials for group-VA transition metals are successfully built by considering interatomic interactions up to the fifth neighbor atoms. These angular-independent potentials drastically promote the accuracy of the predicted surface energies, which match the experimental results well.
[1] Carlsson A E et al 1980 Philos. Mag. A 41 241
[2] Chen N X et al 1997 Phys. Rev. E 55 R5
[3] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[4] Yuan X J, Chen N X et al 2010 J. Phys.: Condens. Matter 22 375503
[5] Banerjea A et al 1988 Phys. Rev. B 37 6632
[6] Guellil A M et al 1992 J. Mater. Res. 7 639
[7] Fellinger M R et al 2010 Phys. Rev. B 81 144119
[8] Li Y et al 2003 Phys. Rev. B 67 125101
[9] Hu W Y et al 2002 Comput. Mater. Sci. 23 175
[10] Ackland G J et al 1986 Philos. Mag. A 54 301
[11] Dai X D et al 2007 Phys. Rev. B 75 052102
[12] Rose J H et al 1984 Phys. Rev. B 29 2963
[13] Barrett C S et al 1980 Structure of Metals 3rd (New York: Pregamon) p 629
[14] Kittle C 1976 Introduction to Solid state Physics 5th (New York: Wiley) p 74
[15] Levy M et al 2001 Handbook of Elastic Properties of Solids, Liquids and Gases (New York: Academic) vol 2 p 99
[16] Dinsdale A T 1991 CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 15 317
[17] Baskes M I 1997 Mater. Chem. Phys. 50 152
[18] Vitos L et al 1998 Surf. Sci. 411 186
[19] Mezey M I et al 1982 Jpn. J. Appl. Phys. Part I 21 1569
[20] Baskes M I 1992 Phys. Rev. B 46 2727 and references therein
[21] Lee B J et al 2001 Phys. Rev. B 64 184102
[22] Baskes M I 1992 Phys. Rev. B 46 2727
[23] Li J H et al 2007 Phys. Rev. B 76 104101
[24] Foiles S M et al 1986 Phys. Rev. B 33 7983
[25] Sundquist B E 1964 Acta Metall. 12 67
[26] Grenga H E et al 1976 Surf. Sci. 61 283
[27] Wang Y R et al 1995 J. Appl. Phys. 78 122
[28] Zope R R aet al 2003 Phys. Rev. B 68 024102
[29] Baskes M I et al 2007 Phys. Rev. B 75 094113
[30] Mishin Y et al 2010 Acta Mater. 58 1117
[31] Zhang B et al 1999 Physica B 262 218 and references therein
[32] Jannot C et al 1982 J. Phys. F: Met. Phys. 12 47
[33] Siegel R W 1982 Proc. Yamada Conf. On Point Defects and Defect Interactions in Metals ed Takamura J, Doyama M and Kiritani M (Tokyo: University of Tokyo Press) p 533
[34] Kraftmacher Y A 1977 Scripta Matall. 11 1033
[35] Schwirtlch I A et al 1980 Philos. Mag. A 42 613
[36] Brandes E A et al 1992 Smithells Metals Reference Book 7th edn (Oxford: Butterworth-Heinemann)
[37] Maier K et al 1977 Phys. Rev. Lett. 39 484