摘要We propose a scheme to realize the Heisenberg spin chain in a one-dimensional array of cavities connected by optical fibers. The proposed scheme is based on the off-resonant Raman transitions between two ground states of atoms, and is induced by the cavity modes and external fields. Under the interactions between the nearest neighbors (NNs) and the next NNs, the result shows that the atoms, via the exchange of virtual photons, can be effectively equal to a spin-1/2 Heisenberg model under certain conditions. The parameters of the effective Hamiltonian can be controlled by tuning the laser fields.
Abstract:We propose a scheme to realize the Heisenberg spin chain in a one-dimensional array of cavities connected by optical fibers. The proposed scheme is based on the off-resonant Raman transitions between two ground states of atoms, and is induced by the cavity modes and external fields. Under the interactions between the nearest neighbors (NNs) and the next NNs, the result shows that the atoms, via the exchange of virtual photons, can be effectively equal to a spin-1/2 Heisenberg model under certain conditions. The parameters of the effective Hamiltonian can be controlled by tuning the laser fields.
[1] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[2] Wang X G 2001 Phys. Rev. A 64 012313
[3] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[4] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[5] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[6] Abliz A, Gao H J, Xie X C, Wu Y S and Liu W M 2006 Phys. Rev. A 74 052105
[7] Kheirandish F, Akhtarshenas S J and Mohammadi H 2008 Phys. Rev. A 77 042309
[8] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[9] Makhlin Y, Schön and Shnirman A 2001 Rev. Mod. Phys. 73 357
[10] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
[11] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
Garca-Ripol J J, Martin-Delgado M A and Cirac J I 2004 Phys. Rev. Lett. 93 250405
[12] Angelakis D G, Santos M F and Bose S 2007 Phys. Rev. A 76 031805(R)
[13] Hartmann M J, Brandäo F G S L and Plenio M B 2006 Nature Phys. 2 849
Hartmann M J, Brandäo F G S L and Plenio M B 2007 Phys. Rev. Lett. 99 160501
[14] Greentree A D, Tahan C Cole J H and Hollenberg L C L 2006 Nature Phys. 2 856
[15] Rossini D and Fazio R 2007 Phys. Rev. Lett. 99 186401
[16] Hu F M, Zhou L, Shi T and Sun C P 2007 Phys. Rev. A 76 013819
[17] Angelakis J Cho, Angelakis D G and Bose S 2008 Phys. Rev. A 78 062338
[18] Zhou L, Yan W B and Zhao X Y, 2009 J Phys. B: At. Mol. Opt. Phys. 42 065502
[19] Chen Z X, Zhou Z W, Zhou X X, Zhou X F and Guo G C 2010 Phys. Rev. A 81 022303
[20] Cirac J I, Zoller P, Kimble H J and Mabuc H 1997 Phys. Rev. Lett. 78 3221
[21] Pellizzari T 1997 Phys. Rev. Lett. 79 5242
[22] vanEnk S J, Kimble H J, Cirac J I and Zoller P 1999 Phys. Rev. A 59 2659
[23] Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305
Yang Z B, Ye S Y, Serafini A and Zheng S B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 085506
[24] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[25] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
Yin Z Q and Li F L and Peng P 2007 Phys. Rev. A 76 062311
[26] Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303
Zhong Z R 2010 Chin. Phys. Lett. 27 100305
[27] Lu X Y, Liu J B, Ding C L and Li J H 2008 Phys. Rev. A 78 032305
Lu X Y, Si L G, Hao X Y and Yang X X 2009 Phys. Rev. A 79 052330
[28] Zhong Z R 2010 Opt. Commun. 283 1972
[29] Zheng S B, Yang C P and Nori F 2010 Phys. Rev. A 82 042327
[30] Wu Y 1996 Phys. Rev. A 54 1586
Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
Wu Y and Yang X X 2007 Phys. Rev. Lett. 98 013601
[31] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L and Imamğlu A 2007 Nature 445 896
[32] Yang C P, Zheng S B and Nori F 2010 Phys. Rev. A 82 062326
[33] Yang W L, Hu Y, Yin Z Q, Deng Z J and Feng M 2011 Phys. Rev. A 83 022302