摘要We present a detailed study on the dynamics of two-qubit correlations in non-Markovian environments, applying the hierarchy equations approach. This treatment is free from the limitation of perturbative, Markovian or rotating wave approximations. It is shown that crossovers and sudden changes in the classical and quantum correlations can appear when the strength of the interaction between qubits is gradually reduced. For some special initial states, there are even sudden transitions between the classical and quantum correlations.
Abstract:We present a detailed study on the dynamics of two-qubit correlations in non-Markovian environments, applying the hierarchy equations approach. This treatment is free from the limitation of perturbative, Markovian or rotating wave approximations. It is shown that crossovers and sudden changes in the classical and quantum correlations can appear when the strength of the interaction between qubits is gradually reduced. For some special initial states, there are even sudden transitions between the classical and quantum correlations.
(Decoherence; open systems; quantum statistical methods)
引用本文:
LI Chuan-Feng**;WANG Hao-Tian;YUAN Hong-Yuan;GE Rong-Chun;GUO Guang-Can
. Non-Markovian Dynamics of Quantum and Classical Correlations in the Presence of System-Bath Coherence[J]. 中国物理快报, 2011, 28(12): 120302-120302.
LI Chuan-Feng**, WANG Hao-Tian, YUAN Hong-Yuan, GE Rong-Chun, GUO Guang-Can
. Non-Markovian Dynamics of Quantum and Classical Correlations in the Presence of System-Bath Coherence. Chin. Phys. Lett., 2011, 28(12): 120302-120302.
[1] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[2] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[3] Wang H T, Li C F, Zou Y, Ge R C and Guo G C 2011 Phys. A 390 3183
[4] Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401
[5] Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
[6] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[7] Luo S 2008 Phys. Rev. A 77 042303
[8] Modi K, Paterek T, Son W, Vedral V and Williamson M 2011 Phys. Rev. Lett. 104 080501
[9] Vedral V 2002 Rev. Mod. Phys. 74 197
[10] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[11] Xu J S, Li C F, Zhang C J, Xu X Y, Zhang Y S and Guo G C 2010 Phys. Rev. A 82 042308
[12] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nature Commun. 1 7
[13] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[14] Ishizaki A and Tanimura Y 2005 J. Phys. Soc. Jpn. 74 3131
[15] Chen L, Zheng R, Shi Q and Yan Y J 2009 J. Chem. Phys. 131 094502
[16] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[17] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105