Intensity and Polarization Effects in Short-Pulse Multiphoton Ionization of Xenon
KANG Hui-Peng1,2**, WANG Chuan-Liang1,2, LIN Zhi-Yang1,2, CHEN Yong-Ju1,2, WU Ming-Yan1,2, QUAN Wei1, LIU Hong-Ping1, LIU Xiao-Jun1***
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Graduate School of Chinese Academy of Sciences, Beijing 100049
Intensity and Polarization Effects in Short-Pulse Multiphoton Ionization of Xenon
KANG Hui-Peng1,2**, WANG Chuan-Liang1,2, LIN Zhi-Yang1,2, CHEN Yong-Ju1,2, WU Ming-Yan1,2, QUAN Wei1, LIU Hong-Ping1, LIU Xiao-Jun1***
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2Graduate School of Chinese Academy of Sciences, Beijing 100049
摘要We present photoelectron spectra (PES) of xenon subject to ultrashort intense laser pulses at 400 nm. The intensity-dependent PES exhibit the dominance of ac-Stark-shifted multiphoton resonances in a multiphoton ionization process. A distinct difference in the spectra with different laser polarization states (i.e., linearly and circularly polarized states) is revealed and can be understood in terms of the quantum selection rule, which restricts the angular momentum of states that may shift into multiphoton resonances. Furthermore, the intensity dependence of the resonance-enhanced electron yield is analyzed in the context of multiphoton Landau–Zener theory. The model calculation results considering the focal volume effect are in good agreement with the experimental observation.
Abstract:We present photoelectron spectra (PES) of xenon subject to ultrashort intense laser pulses at 400 nm. The intensity-dependent PES exhibit the dominance of ac-Stark-shifted multiphoton resonances in a multiphoton ionization process. A distinct difference in the spectra with different laser polarization states (i.e., linearly and circularly polarized states) is revealed and can be understood in terms of the quantum selection rule, which restricts the angular momentum of states that may shift into multiphoton resonances. Furthermore, the intensity dependence of the resonance-enhanced electron yield is analyzed in the context of multiphoton Landau–Zener theory. The model calculation results considering the focal volume effect are in good agreement with the experimental observation.
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
引用本文:
KANG Hui-Peng;**;WANG Chuan-Liang;LIN Zhi-Yang;CHEN Yong-Ju;WU Ming-Yan;QUAN Wei;LIU Hong-Ping;LIU Xiao-Jun***
. Intensity and Polarization Effects in Short-Pulse Multiphoton Ionization of Xenon[J]. 中国物理快报, 2011, 28(8): 83201-083201.
KANG Hui-Peng, **, WANG Chuan-Liang, LIN Zhi-Yang, CHEN Yong-Ju, WU Ming-Yan, QUAN Wei, LIU Hong-Ping, LIU Xiao-Jun***
. Intensity and Polarization Effects in Short-Pulse Multiphoton Ionization of Xenon. Chin. Phys. Lett., 2011, 28(8): 83201-083201.
[1] Agostini P et al 1979 Phys. Rev. Lett. 42 1127
[2] Freeman R R et al 1987 Phys. Rev. Lett. 59 1092
[3] Hansch P et al 1998 Phys. Rev. A 57 R709
[4] Agostini P et al 1989 Phys. Rev. Lett. 63 2208
[5] Mevel E et al 1993 Phys. Rev. Lett. 70 406
[6] Agostini P et al 1994 Laser Spectroscopy (AIP Conf. Proc.) ed Bloomfield L et al (New York: American Institute of Physics) vol 290 p 231
[7] de Boer M P et al 1994 J. Phys. B: At. Mol. Opt. Phys. 27 721
[8] Muller H G et al 1988 Phys. Rev. Lett. 60 565
[9] Rottke H et al 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1479
[10] Agostini P et al 1989 J. Phys. B: At. Mol. Opt. Phys. 22 1971
[11] Bucksbaum P H et al 1990 Phys. Rev. A 41 4119
[12] Vos R J et al 1992 Phys. Rev. Lett. 68 170
[13] de Boer M P et al 1993 Phys. Rev. A 47 R45
[14] Jones R R et al 1993 Phys. Rev. A 47 R49
[15] Quan W et al 2009 Phys. Rev. Lett. 103 093001
[16] Kang H P et al 2010 Phys. Rev. Lett. 104 203001
[17] Wang Y et al 2010 Chin. Phys. Lett. 27 083202
[18] Bucksbaum P H et al 1987 J. Opt. Soc. Am. B 4 760
[19] Schyja V et al 1998 Phys. Rev. A 57 3692
[20] http://physics. nist.gov/PhysRefData/ASD/levels_form.html
[21] Van Woerkpm L D et al 1989 J. Mod. Opt. 36 817
[22] Landau L D 1932 Phys. Z. Sowjetunion 2 46
[23] Vrijen R B et al 1993 Phys. Rev. Lett. 70 3016
[24] Hansch P et al 1996 Opt. Lett. 21 1286